Log in

Deep learning-based forecasting of sea surface temperature in the interim future: application over the Aegean, Ionian, and Cretan Seas (NE Mediterranean Sea)

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

Sea surface temperature (SST) is a key indicator of the global climate system and is directly related to marine and coastal ecosystems, weather conditions, and atmospheric events. Marine heat waves (MHWs), characterized by prolonged periods of high SST, affect significantly the oceanic water quality and thus, the local ecosystem, and marine and coastal activities. Given the anticipated increase of MHWs occurrences due to climate change, develo** targeted strategies is needed to mitigate their impact. Accurate SST forecasting can significantly contribute to this cause and thus it comprises a crucial, yet challenging, task for the scientific community. Despite the wide variety of existing methods in the literature, the majority of them focus either on providing near-future SST forecasts (a few days until 1 month) or long-term predictions (decades to century) in climate scales based on hypothetical scenarios that need to be proven. In this work, we introduce a robust deep learning-based method for efficient SST forecasting of the interim future (1 year ahead) using high-resolution satellite-derived SST data. Our approach processes daily SST sequences lasting 1 year, along with five other relevant atmospheric variables, to predict the corresponding daily SST timeseries for the subsequent year. The novel method was deployed to accurately forecast SST over the northeastern Mediterranean Seas (Aegean, Ionian, Cretan Seas: AICS). Utilizing the effectiveness of well-established deep learning architectures, our method can provide accurate spatiotemporal predictions for multiple areas at once, without the need to be deployed separately at each sub-region. The modular design of the framework allows customization for different spatial and temporal resolutions according to use case requirements. The proposed model was trained and evaluated using available data from the AICS region over a 15-year time period (2008–2022). The results demonstrate the efficiency of our method in predicting SST variability, even for previously unseen data that are over 2 years in advance, in respect to the training set. The proposed methodology is a valuable tool that also can contribute to MHWs prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The data that support the findings of this study are openly available. The sea surface temperatures (SSTs) are available in: https://doi.org/10.48670/moi-00172. The ERA-5 meteorological data are available in: https://doi.org/10.24381/cds.adbb2d47

Notes

  1. https://marine.copernicus.eu/

  2. SST_MED_SST_L4_NRT_OBSERVATIONS_010_004_c.

  3. https://climate.copernicus.eu/

  4. https://www.ndbc.noaa.gov/

References

  • Androulidakis Y, Kourafalou V (2011) Evolution of a buoyant outflow in the presence of complex topography: the Dardanelles plume (North Aegean Sea). J Geophys Res (Oceans) 116:4019

    Article  Google Scholar 

  • Androulidakis YS, Kourafalou V (2022) Marine heat waves over natural and urban coastal environments of South Florida. Water 14(23):3840

    Article  Google Scholar 

  • Androulidakis YS, Krestenitis YN (2022) Sea surface temperature variability and marine heat waves over the Aegean, Ionian, and Cretan seas from 2008–2021. J Mar Sci Eng 10(1):42

    Article  Google Scholar 

  • Bell MJ, Lefebvre M, Le Traon P-Y, Smith N, Wilmer-Becker K (2009) GODAE: the global ocean data assimilation experiment. Oceanography 22(3):14–21

    Article  Google Scholar 

  • Birkeland C (1997) Life and death of coral reefs. Springer Science & Business Media

  • Cho K, Van Merriënboer B, Gulcehre C, Bahdanau D, Bougares F, Schwenk H, Bengio Y (2014) Learning phrase representations using RNN encoder-decoder for statistical machine translation. ar**v:1406.1078

  • Cleveland RB, Cleveland WS, McRae JE, Terpenning I (1990) STL: a seasonal-trend decomposition. J Off Stat 6(1):3–73

    Google Scholar 

  • Darmaraki S, Somot S, Sevault F, Nabat P (2019) Past variability of Mediterranean Sea marine heatwaves. Geophys Res Lett 46(16):9813–9823

    Article  Google Scholar 

  • de Almeida Pereira GH, Fusioka AM, Nassu BT, Minetto R (2021) Active fire detection in Landsat-8 imagery: a large-scale dataset and a deep-learning study. ISPRS Journal of Photogrammetry and Remote Sensing 178:171–186

    Article  Google Scholar 

  • Di Lorenzo E, Mantua N (2016) Multi-year persistence of the 2014/15 north pacific marine heatwave. Nature Climate Change 6(11):1042–1047

    Article  Google Scholar 

  • Drévillon M, Bourdallé-Badie R, Derval C, Lellouche J, Rémy E, Tranchant B, Benkiran M, Greiner E, Guinehut S, Verbrugge N et al (2008) The GODAE/Mercator-Ocean global ocean forecasting system: results, applications and prospects. J Oper Oceanogr 1(1):51–57

    Google Scholar 

  • Freund Y, Schapire RE et al (1996) Experiments with a new boosting algorithm. In: icml, vol 96, pages 148–156. Citeseer

  • Frölicher TL, Fischer EM, Gruber N (2018) Marine heatwaves under global warming. Nature 560(7718):360–364

    Article  Google Scholar 

  • Garrabou J, Coma R, Bensoussan N, Bally M, Chevaldonné P, Cigliano M, Díaz D, Harmelin J-G, Gambi MC, Kersting D et al (2009) Mass mortality in Northwestern Mediterranean rocky benthic communities: effects of the 2003 heat wave. Glob Chang Biol 15(5):1090–1103

    Article  Google Scholar 

  • Garrabou J, Gómez-Gras D, Medrano A, Cerrano C, Ponti M, Schlegel R, Bensoussan N, Turicchia E, Sini M, Gerovasileiou V et al (2022) Marine heatwaves drive recurrent mass mortalities in the Mediterranean Sea. Glob Chang Biol 28(19):5708–5725

    Article  Google Scholar 

  • Good S, Fiedler E, Mao C, Martin MJ, Maycock A, Reid R, Roberts-Jones J, Searle T, Waters J, While J et al (2020) The current configuration of the ostia system for operational production of foundation sea surface temperature and ice concentration analyses. Remote Sens 12(4):720

    Article  Google Scholar 

  • He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 770–778

  • Hobday AJ, Alexander LV, Perkins SE, Smale DA, Straub SC, Oliver EC, Benthuysen JA, Burrows MT, Donat MG, Feng M et al (2016) A hierarchical approach to defining marine heatwaves. Prog Oceanogr 141:227–238

    Article  Google Scholar 

  • Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735–1780

    Article  Google Scholar 

  • Holbrook NJ, Scannell HA, Sen Gupta A, Benthuysen JA, Feng M, Oliver EC, Alexander LV, Burrows MT, Donat MG, Hobday AJ et al (2019) A global assessment of marine heatwaves and their drivers. Nat Commun 10(1):2624

    Article  Google Scholar 

  • Houpert L, Testor P, Durrieu de Madron X, Somot S, D’Ortenzio F, Estournel C, Lavigne H (2014) Seasonal cycle of the mixed layer, the seasonal thermocline and the upper-ocean heat storage rate in the Mediterranean Sea derived from observations. Progress in Oceanography, pages –

  • Jahanbakht M, **ang W, Azghadi MR (2021) Sea surface temperature forecasting with ensemble of stacked deep neural networks. IEEE Geosci Remote Sens Lett 19:1–5

    Article  Google Scholar 

  • Kara AB, Helber RW, Boyer TP, Elsner JB (2009) Mixed layer depth in the Aegean, Marmara, Black and Azov Seas: Part I: general features. Journal of Marine Systems 78:S169–S180. Coastal Processes: Challenges for Monitoring and Prediction

  • Kazemi SM, Goel R, Eghbali S, Ramanan J, Sahota J, Thakur S, Wu S, Smyth C, Poupart P, Brubaker M (2019) Time2vec: learning a vector representation of time. ar**v:1907.05321

  • Kendall M (1975) Rank correlation methods. Charles Griffin, London, UK

    Google Scholar 

  • Kent, E.C., Taylor, P.K. (2006). Toward estimating climatic trends in SST. Part I: methods of measurement. Journal of Atmospheric and Oceanic Technology 23(3):464–475

  • Krestenitis M, Orfanidis G, Ioannidis K, Avgerinakis K, Vrochidis S, Kompatsiaris I (2019) Oil spill identification from satellite images using deep neural networks. Remote Sens 11(15):1762

    Article  Google Scholar 

  • Lattos A, Papadopoulos DK, Feidantsis K, Karagiannis D, Giantsis IA, Michaelidis B (2022) Are marine heatwaves responsible for mortalities of farmed mytilus galloprovincialis? a pathophysiological analysis of marteilia infected mussels from thermaikos gulf, greece. Animals 12(20):2805

    Article  Google Scholar 

  • Lattos A, Papadopoulos DK, Feidantsis K, Karagiannis D, Giantsis IA, Michaelidis B (2022) Are marine heatwaves responsible for mortalities of farmed Mytilus galloprovincialis? A pathophysiological analysis of Marteilia infected mussels from Thermaikos Gulf, Greece. Animals 12(20):2805

  • Mohamed B, Skliris N (2022) Steric and atmospheric contributions to interannual sea level variability in the Eastern Mediterranean Sea over 1993–2019. Oceanologia 64(1):50–62

    Article  Google Scholar 

  • Moss RH, Edmonds JA, Hibbard KA, Manning MR, Rose SK, Van Vuuren DP, Carter TR, Emori S, Kainuma M, Kram T et al (2010) The next generation of scenarios for climate change research and assessment. Nature 463(7282):747–756

    Article  Google Scholar 

  • Nardelli BB, Tronconi C, Pisano A, Santoleri R (2013) High and ultra-high resolution processing of satellite sea surface temperature data over Southern European Seas in the framework of MyOcean project. Remote Sens Environ 129:1–16

    Article  Google Scholar 

  • Nardelli C, Pisano A, Tronconi BB (2019) Mediterranean sea and black sea surface temperature NRT data, quality information document. Luxembourg, Copernicus Marine Environment Monitoring Service

    Google Scholar 

  • Nazarenko L, Schmidt G, Miller R, Tausnev N, Kelley M, Ruedy R, Russell G, Aleinov I, Bauer M, Bauer S et al (2015) Future climate change under RCP emission scenarios with GISS M odelE2. J Adv Model Earth Syst 7(1):244–267

    Article  Google Scholar 

  • Oliver EC, Benthuysen JA, Bindoff NL, Hobday AJ, Holbrook NJ, Mundy CN, Perkins-Kirkpatrick SE (2017) The unprecedented 2015/16 Tasman Sea marine heatwave. Nat Commun 8(1):16101

    Article  Google Scholar 

  • Oliver EC, Donat MG, Burrows MT, Moore PJ, Smale DA, Alexander LV, Benthuysen JA, Feng M, Sen Gupta A, Hobday AJ et al (2018) Longer and more frequent marine heatwaves over the past century. Nat Commun 9(1):1–12

    Article  Google Scholar 

  • Olson DB, Kourafalou VH, Johns WE, Samuels G, Veneziani M (2007) Aegean surface circulation from a satellite-tracked drifter array. J Phys Oceanogr 37(7):1898–1917

    Article  Google Scholar 

  • Patil KR, Iiyama M (2022) Deep learning models to predict sea surface temperature in Tohoku region. IEEE Access 10:40410–40418

    Article  Google Scholar 

  • Pearce AF, Feng M (2013) The rise and fall of the “marine heat wave’’ off Western Australia during the summer of 2010/2011. J Mar Syst 111:139–156

    Article  Google Scholar 

  • Pinardi N, Allen I, Demirov E, De Mey P, Korres G, Lascaratos A, Le Traon P-Y, Maillard C, Manzella G, Tziavos C (2003) The Mediterranean ocean forecasting system: first phase of implementation (1998–2001). Annales Geophysicae, vol 21. Copernicus Publications Göttingen, Germany, pp 3–20

    Google Scholar 

  • Rilov G (2016) Multi-species collapses at the warm edge of a warming sea. Sci Rep 6(1):36897

    Article  Google Scholar 

  • Tabernik D, Šela S, Skvarč J, Skočaj D (2020) Segmentation-based deep-learning approach for surface-defect detection. J Intell Manuf 31(3):759–776

    Article  Google Scholar 

  • Wang W, Lee J, Harrou F, Sun Y (2020) Early detection of Parkinson’s disease using deep learning and machine learning. IEEE Access 8:147635–147646

    Article  Google Scholar 

  • Wang Y, Zhang J, Zhu H, Long M, Wang J, Yu PS (2019) Memory in memory: a predictive neural network for learning higher-order non-stationarity from spatiotemporal dynamics. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 9154–9162

  • Wernberg T, Smale DA, Tuya F, Thomsen MS, Langlois TJ, De Bettignies T, Bennett S, Rousseaux CS (2013) An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nat Clim Chang 3(1):78–82

    Article  Google Scholar 

  • Willmott CJ, Robeson SM, Matsuura K (2012) A refined index of model performance. Int J Climatol 32(13):2088–2094

    Article  Google Scholar 

  • **ao C, Chen N, Hu C, Wang K, Gong J, Chen Z (2019) Short and mid-term sea surface temperature prediction using time-series satellite data and LSTM-AdaBoost combination approach. Remote Sens Environ 233

  • **ao C, Chen N, Hu C, Wang K, Xu Z, Cai Y, Xu L, Chen Z, Gong J (2019) A spatiotemporal deep learning model for sea surface temperature field prediction using time-series satellite data. Environ Model Softw 120:104502

    Article  Google Scholar 

  • **e J, Zhang J, Yu J, Xu L (2019) An adaptive scale sea surface temperature predicting method based on deep learning with attention mechanism. IEEE Geosci Remote Sens Lett 17(5):740-744

    Article  Google Scholar 

  • Xu S, Dai D, Cui X, Yin X, Jiang S, Pan H, Wang G (2023) A deep learning approach to predict sea surface temperature based on multiple modes. Ocean Model 181:102158

    Article  Google Scholar 

  • Yang Y, Dong J, Sun X, Lima E, Mu Q, Wang X (2017) A CFCC-LSTM model for sea surface temperature prediction. IEEE Geosci Remote Sens Lett 15(2):207–211

    Article  Google Scholar 

  • Yu X, Shi S, Xu L, Liu Y, Miao Q, Sun M (2020) A novel method for sea surface temperature prediction based on deep learning. Mathematical Problems in Engineering 2020:1–9

    Google Scholar 

  • Zhang K, Geng X, Yan X-H (2020) Prediction of 3-D ocean temperature by multilayer convolutional LSTM. IEEE Geosci Remote Sens Lett 17(8):1303–1307

    Article  Google Scholar 

  • Zhang Q, Wang H, Dong J, Zhong G, Sun X (2017) Prediction of sea surface temperature using long short-term memory. IEEE Geosci Remote Sens Lett 14(10):1745–1749

Download references

Acknowledgements

The sea surface temperatures (SSTs) and the ERA-5 meteorological data were provided by the E.U. Copernicus Marine Service (https://www.copernicus.eu/, accessed on 24/04/23).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marios Krestenitis.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Tomasz Dabrowski.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on the Coastal Ocean and Shelf Seas Task Team (COSS-TT) meeting, Montreal, Canada, May 2-4, 2023

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krestenitis, M., Androulidakis, Y. & Krestenitis, Y. Deep learning-based forecasting of sea surface temperature in the interim future: application over the Aegean, Ionian, and Cretan Seas (NE Mediterranean Sea). Ocean Dynamics 74, 149–168 (2024). https://doi.org/10.1007/s10236-023-01595-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-023-01595-3

Keywords

Navigation