Log in

Various acids functionalized polyaniline–peanut shell activated carbon composites for dye removal

  • ORIGINAL ARTICLE
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

Peanut shell was used to prepare activated carbon (PSAC) by the hydrothermal activation in KOH. The synthesized PSAC was modified using PANI. The functionalized waste peanut shell activated carbon/polyaniline (PANI/PSAC) composite was used for wastewater treatment. The impact of PANI acid do** and the synergistic effect of activated carbon of the adsorbents on MB dye removal were investigated. HCl, H2SO4 and CH3COOH were used as dopants for the composite functionalization. The composites were characterized using SEM, TEM, EDX, XRD, and FTIR. The acid dopants formed nanorods, nanofibers, and nanotubes PANI structures. The PSAC had a surface area of 582 m2/g and pore diameter of 1.9052 nm. Adsorption parameters: contact time, pH, adsorbent dose, and solution temperature, were examined. The HCl-P/PSAC had the highest adsorption capacity of 220 mg/g and about 90% removal of the 100 mg/L within 60 min which is 2.3 times the adsorption capacity of PSAC (94.67 mg/g). The adsorption isotherms, kinetics and thermodynamics were investigated. All the prepared composites followed both Langmuir, Freundlich isotherm and the PSO model. The adsorption mechanisms were explained using FTIR. To the author’s knowledge, this study represents the first examination of do** acids impact on the PANI/PSAC composite for dye removal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Scherer L, Svenning JC, Huang J, Seymour CL, Sandel B, Mueller N, Kummu M, Bekunda M, Bruelheide H, Hochman Z, Siebert S, Rueda O, van Bodegom PM (2020) Global priorities of environmental issues to combat food insecurity and biodiversity loss. Sci Total Environ 730(April):139096. https://doi.org/10.1016/j.scitotenv.2020.139096

    Article  Google Scholar 

  2. Eslamian S, Parvizi S, Ostad-Ali-Askari K, Talebmorad H (2018) Water. Encycl Earth Sci Ser PartF3:1–5. https://doi.org/10.1007/978-3-319-12127-7_295-1

    Article  Google Scholar 

  3. Bracco S, Calicioglu O, Juan MGS, Flammini A (2018) Assessing the contribution of bioeconomy to the total economy: a review of national frameworks. Sustain. https://doi.org/10.3390/su10061698

    Article  Google Scholar 

  4. Javadinejad S, Ostad-Ali-Askari K, Jafary F (2019) Using simulation model to determine the regulation and to optimize the quantity of chlorine injection in water distribution networks. Model Earth Syst Environ 5(3):1015–1023. https://doi.org/10.1007/s40808-019-00587-x

    Article  Google Scholar 

  5. Wang B, Dong F, Chen M, Zhu J, Tan J, Fu X, Wang Y, Chen S (2016) Advances in recycling and utilization of agricultural wastes in China: based on environmental risk, crucial pathways, influencing factors, policy mechanism. Proc Environ Sci 31:12–17. https://doi.org/10.1016/j.proenv.2016.02.002

    Article  Google Scholar 

  6. Nasar A, Mashkoor F (2019) Application of polyaniline-based adsorbents for dye removal from water and wastewater—a review. Environ Sci Pollut Res 26(6):5333–5356. https://doi.org/10.1007/s11356-018-3990-y

    Article  Google Scholar 

  7. Tan Z, Zou J, Zhang L, Huang Q (2018) Morphology, pore size distribution, and nutrient characteristics in biochars under different pyrolysis temperatures and atmospheres. J Mater Cycles Waste Manag 20(2):1036–1049. https://doi.org/10.1007/s10163-017-0666-5

    Article  Google Scholar 

  8. Li Y, Pu Z, Sun Q, Pan N (2021) A review on novel activation strategy on carbonaceous materials with special morphology/texture for electrochemical storage. J Energy Chem 60:572–590. https://doi.org/10.1016/j.jechem.2021.01.017

    Article  Google Scholar 

  9. Chauhan NPS, Mozafari M (2019) Polyaniline: an introduction and overview. Elsevier Inc., Amsterdam. https://doi.org/10.1016/B978-0-12-817915-4.00001-4

    Book  Google Scholar 

  10. Chen J, Qiu J, Wang B, Feng H, Yu Y, Sakai E (2017) Polyaniline/sugarcane bagasse derived biocarbon composites with superior performance in supercapacitors. J Electroanal Chem 801:360–367. https://doi.org/10.1016/j.jelechem.2017.08.014

    Article  Google Scholar 

  11. Ismanto AE, Wang S, Soetaredjo FE, Ismadji S (2010) Preparation of capacitor’s electrode from cassava peel waste. Bioresour Technol 101(10):3534–3540. https://doi.org/10.1016/j.biortech.2009.12.123

    Article  Google Scholar 

  12. Kanwal F, Rehman R, Bakhsh IQ (2018) Batch wise sorptive amputation of diamond green dye from aqueous medium by novel Polyaniline-Alstonia scholaris leaves composite in ecofriendly way. J Clean Prod 196:350–357. https://doi.org/10.1016/j.jclepro.2018.06.056

    Article  Google Scholar 

  13. Sundriyal P, Bhattacharya S (2017) Polyaniline silver nanoparticle coffee waste extracted porous graphene oxide nanocomposite structures as novel electrode material for rechargeable batteries. Mater Res Express. https://doi.org/10.1088/2053-1591/aa5ece

    Article  Google Scholar 

  14. Belaib F, Azzedine M, Boubeker B, Abdeslam-Hassen M (2014) Experimental study of oxytetracycline retention by adsorption onto polyaniline coated peanut shells. Int J Hydrogen Energy 39(3):1511–1515. https://doi.org/10.1016/j.ijhydene.2013.05.015

    Article  Google Scholar 

  15. Pham TT, Mai TTT, Bui MQ, Mai TX, Tran HY, Phan TB (2014) Nanostructured polyaniline rice husk composite as adsorption materials synthesized by different methods. Adv Nat Sci Nanosci Nanotechnol 5(1):1–6. https://doi.org/10.1088/2043-6262/5/1/015010

    Article  Google Scholar 

  16. Chan WH, Mazlee MN, Ahmad ZA, Ishak MAM, Shamsul JB (2017) The development of low cost adsorbents from clay and waste materials: a review. J Mater Cycles Waste Manag 19(1):1–14. https://doi.org/10.1007/s10163-015-0396-5

    Article  Google Scholar 

  17. Duhan M, Kaur R (2021) Nano-structured polyaniline as a potential adsorbent for methylene blue dye removal from effluent. J Compos Sci. https://doi.org/10.3390/jcs5010007

    Article  Google Scholar 

  18. Aliabadi RS, Mahmoodi NO (2018) Synthesis and characterization of polypyrrole, polyaniline nanoparticles and their nanocomposite for removal of azo dyes; sunset yellow and Congo red. J Clean Prod 179:235–245. https://doi.org/10.1016/j.jclepro.2018.01.035

    Article  Google Scholar 

  19. Chen J, Zhu J, Wang N, Feng J, Yan W (2019) Hydrophilic polythiophene/SiO2 composite for adsorption engineering: Green synthesis in aqueous medium and its synergistic and specific adsorption for heavy metals from wastewater. Chem Eng J 360(November 2018):1486–1497. https://doi.org/10.1016/j.cej.2018.10.228

    Article  Google Scholar 

  20. Samadi A, **e M, Li J, Shon H, Zheng C, Zhao S (2021) Polyaniline-based adsorbents for aqueous pollutants removal: a review. Chem Eng J 418(January):129425. https://doi.org/10.1016/j.cej.2021.129425

    Article  Google Scholar 

  21. Abdelraheem A, El-Shazly AH, Elkady M (2019) Comparable investigation of polyaniline behavior towards gaseous ammonia and toluene adsorption. Environ Sci Pollut Res 26(4):3991–3999. https://doi.org/10.1007/s11356-018-3877-y

    Article  Google Scholar 

  22. Zhu G, Zhu X, **ao Z, Zhou R, Zhu Y, Wan X (2014) Kinetics of peanut shell pyrolysis and hydrolysis in subcritical water. J Mater Cycles Waste Manag 16(3):546–556. https://doi.org/10.1007/s10163-013-0209-7

    Article  Google Scholar 

  23. Sareena C, Sreejith MP, Ramesan MT, Purushothaman E (2014) Biodegradation behaviour of natural rubber composites reinforced with natural resource fillers—monitoring by soil burial test. J Reinf Plast Compos 33(5):412–429. https://doi.org/10.1177/0731684413515954

    Article  Google Scholar 

  24. Wang X, Wu D, Song X, Du W, Zhao X, Zhang D (2019) Review on carbon/polyaniline hybrids: design and synthesis for supercapacitor. Molecules. https://doi.org/10.3390/molecules24122263

    Article  Google Scholar 

  25. Pattanaik L, Pattnaik F, Saxena DK, Naik SN (2019) Biofuels from agricultural wastes, no January. Elsevier Inc., Amsterdam. https://doi.org/10.1016/B978-0-12-815162-4.00005-7

    Book  Google Scholar 

  26. Jalali M, Aboulghazi F (2013) Sunflower stalk, an agricultural waste, as an adsorbent for the removal of lead and cadmium from aqueous solutions. J Mater Cycles Waste Manag 15(4):548–555. https://doi.org/10.1007/s10163-012-0096-3

    Article  Google Scholar 

  27. Quy BM, Thi BP, Due LV (2013) Pseudo-isotherms for Cadmium ion onto Peanut Shell-Polyaniline nanocomposite. Vietnam J Chem 51(5):529–533

    Google Scholar 

  28. Liu L, Luo XB, Ding L, Luo SL (2018) Application of nanotechnology in the removal of heavy metal from water. Elsevier Inc., Amsterdam. https://doi.org/10.1016/B978-0-12-814837-2.00004-4

    Book  Google Scholar 

  29. Said KAM, Ismail NZ, Jama’in RL, Alipah NAM, Sutan NM, Gadung GG, Baini R, Zauzi NSA (2018) Application of freundlich and Temkin isotherm to study the removal of Pb(II) via adsorption on activated carbon equipped polysulfone membrane. Int J Eng Technol 7(3.18 Special issue 18):91–93. https://doi.org/10.14419/ijet.v7i3.18.16683

    Article  Google Scholar 

  30. Noby H, El-Shazly A, Elkady M, Ohshima M (2017) Adsorption profiles of acid dye using synthesized polyaniline nanostructure with different morphologies. J Chem Eng Jpn 50(3):170–177. https://doi.org/10.1252/jcej.16we085

    Article  Google Scholar 

  31. Liu P, Zhu Y, Torres J, Lee SH, Yun M (2017) Facile and template-free method toward chemical synthesis of polyaniline film/nanotube structures. J Polym Sci Part A Polym Chem 55(24):3973–3979. https://doi.org/10.1002/pola.28749

    Article  Google Scholar 

  32. Abdelraheem A, El-Shazly AH, Elkady MF (2018) Characterization of atypical polyaniline nano-structures prepared via advanced techniques. Alexandria Eng J 57(4):3291–3297. https://doi.org/10.1016/j.aej.2018.01.012

    Article  Google Scholar 

  33. Qiu B, Wang J, Li Z, Wang X, Li X (2020) Influence of acidity and oxidant concentration on the nanostructures and electrochemical performance of polyaniline during fast microwave-assisted chemical polymerization. Polymers (Basel). https://doi.org/10.3390/polym12020310

    Article  Google Scholar 

  34. Trchová M, Jasenská D, Bláha M, Prokeš J, Stejskal J (2020) Conducting polyaniline prepared in the solutions of formic acid: does functionalization with carboxyl groups occur? Spectrochim Acta Part A Mol Biomol Spectrosc 235:1–11. https://doi.org/10.1016/j.saa.2020.118300

    Article  Google Scholar 

  35. Kazemi F, Naghib SM, Mohammadpour Z (2020) Multifunctional micro-/nanoscaled structures based on polyaniline: an overview of modern emerging devices. Mater Today Chem 16:100249. https://doi.org/10.1016/j.mtchem.2020.100249

    Article  Google Scholar 

  36. Verma CJ, Kumar A, Pal S, Sinha S, Singh AK, Jaiswal A, Prakash R (2020) Polyaniline stabilized activated carbon from Eichhornia Crassipes: potential charge storage material from bio-waste. Renew Energy 162:2285–2296. https://doi.org/10.1016/j.renene.2020.09.135

    Article  Google Scholar 

  37. Zhang Q, Han K, Li S, Li M, Li J, Ren K (2018) Synthesis of garlic skin-derived 3D hierarchical porous carbon for high-performance supercapacitors. Nanoscale 10(5):2427–2437. https://doi.org/10.1039/c7nr07158b

    Article  Google Scholar 

  38. Kamarudin S, Rani MSABA, Mohammad M, Mohammed NH, Su’ait MS, Ibrahim MA, Asim N, Razali H (2021) Investigation on size and conductivity of polyaniline nanofiber synthesised by surfactant-free polymerization. J Mater Res Technol 14:255–261. https://doi.org/10.1016/j.jmrt.2021.06.057

    Article  Google Scholar 

  39. Kavitha B (2012) Spectroscopic studies of nano size crystalline conducting polyaniline. IOSR J Appl Chem 2(1):16–19. https://doi.org/10.9790/5736-0211619

    Article  Google Scholar 

  40. Ren L, Zhang G, Yan Z, Kang L, Xu H, Shi F, Lei Z, Liu ZH (2015) Three-dimensional tubular MoS2/PANI hybrid electrode for high rate performance supercapacitor. ACS Appl Mater Interfaces 7(51):28294–28302. https://doi.org/10.1021/acsami.5b08474

    Article  Google Scholar 

  41. Stejskal J, Sapurina I, Trchová M, Konyushenko EN (2008) Oxidation of aniline: Polyaniline granules, nanotubes, and oligoaniline microspheres. Macromolecules 41(10):3530–3536. https://doi.org/10.1021/ma702601q

    Article  Google Scholar 

  42. Boyer MI, Quillard S, Rebourt E, Louarn G, Buisson JP, Monkman A, Lefrant S (1998) Vibrational analysis of polyaniline: a model compound approach. J Phys Chem B 102(38):7382–7392. https://doi.org/10.1021/jp972652o

    Article  Google Scholar 

  43. Du X, Xu Y, **ong L, Bai Y, Zhu J, Mao S (2014) Polyaniline with high crystallinity degree: synthesis, structure, and electrochemical properties. J Appl Polym Sci 131(19):6–13. https://doi.org/10.1002/app.40827

    Article  Google Scholar 

  44. Karthik S, Sathya P, Dheeban Shankar P, Basker S, Abinaya K, Sorna Gayathri B, Anbazhagan M (2021) Preparation of activated carbon by chemical activation method from the plant Wrightia tinctoria and its application and its application. Int J Bot Stud 6(3):267–273

    Google Scholar 

  45. Paiman SH, Rahman MA, Uchikoshi T, Abdullah N, Othman MHD, Jaafar J, Abas KH, Ismail AF (2020) Functionalization effect of Fe-type MOF for methylene blue adsorption. J Saudi Chem Soc 24(11):896–905. https://doi.org/10.1016/j.jscs.2020.09.006

    Article  Google Scholar 

  46. Ma L, Jiang C, Lin Z, Zou Z (2018) Microwave-hydrothermal treated grape peel as an efficient biosorbent for methylene blue removal. Int J Environ Res Public Health. https://doi.org/10.3390/ijerph15020239

    Article  Google Scholar 

  47. Peydayesh M, Rahbar-Kelishami A (2015) Adsorption of methylene blue onto Platanus orientalis leaf powder: kinetic, equilibrium and thermodynamic studies. J Ind Eng Chem 21:1014–1019. https://doi.org/10.1016/j.jiec.2014.05.010

    Article  Google Scholar 

  48. Králik M (2014) Adsorption, chemisorption, and catalysis. Chem Pap 68(12):1625–1638. https://doi.org/10.2478/s11696-014-0624-9

    Article  Google Scholar 

  49. Owamah HI (2014) Biosorptive removal of Pb(II) and Cu(II) from wastewater using activated carbon from cassava peels. J Mater Cycles Waste Manag 16(2):347–358. https://doi.org/10.1007/s10163-013-0192-z

    Article  Google Scholar 

  50. Rafiqi FA, Majid K (2017) Sequestration of methylene blue (MB) dyes from aqueous solution using polyaniline and polyaniline–nitroprusside composite. J Mater Sci 52(11):6506–6524. https://doi.org/10.1007/s10853-017-0886-z

    Article  Google Scholar 

  51. Raghav S, Kumar D (2018) Adsorption equilibrium, kinetics, and thermodynamic studies of fluoride adsorbed by tetrametallic oxide adsorbent. J Chem Eng Data 63(5):1682–1697. https://doi.org/10.1021/acs.jced.8b00024

    Article  Google Scholar 

  52. Ruixia W, **long C, Lianlong C, Zheng-Hao F, Li A-M, Quanxing Z (2004) Study of the adsorption thermodynamics and kinetics of lipoic acid onto three types of resin. Adsorpt Sci Technol 22(7):523–534

    Article  Google Scholar 

  53. El-Sharkaway EA, Kamel RM, El-Sherbiny IM, Gharib SS (2020) Removal of methylene blue from aqueous solutions using polyaniline/graphene oxide or polyaniline/reduced graphene oxide composites. Environ Technol (United Kingdom) 41(22):2854–2862. https://doi.org/10.1080/09593330.2019.1585481

    Article  Google Scholar 

  54. Wang P, Ma Q, Hu D, Wang L (2016) Adsorption of methylene blue by a low-cost biosorbent: citric acid modified peanut shell. Desalin Water Treat 57(22):10261–10269. https://doi.org/10.1080/19443994.2015.1033651

    Article  Google Scholar 

  55. Islam MT, Hyder AG, Saenz-Arana R, Hernandez C, Guinto T, Ahsan MA, Alvarado-Tenorio B, Noveron JC (2019) Removal of methylene blue and tetracycline from water using peanut shell derived adsorbent prepared by sulfuric acid reflux. J Environ Chem Eng 7(1):102816. https://doi.org/10.1016/j.jece.2018.102816

    Article  Google Scholar 

  56. Bianchi CL, Djellabi R, Della Pina C, Falletta E (2022) Doped-polyaniline based sorbents for the simultaneous removal of heavy metals and dyes from water: unravelling the role of synthesis method and do** agent. Chemosphere 286(3):131941. https://doi.org/10.1016/j.chemosphere.2021.131941

    Article  Google Scholar 

  57. AlMashrea BA, Abla F, Chehimi MM, Workie B, Han C, Mohamed AA (2020) Polyaniline coated gold-aryl nanoparticles: electrochemical synthesis and efficiency in methylene blue dye removal. Synth Met 269(June):116528. https://doi.org/10.1016/j.synthmet.2020.116528

    Article  Google Scholar 

  58. Kumar N, Bahl T, Kumar R (2020) Study of the methylene blue adsorption mechanism using ZrO 2 /Polyaniline nanocomposite. Nano Express 1(3):030025. https://doi.org/10.1088/2632-959x/abca10

    Article  Google Scholar 

  59. Bhagawan D, Poodari S, Ravi Kumar G, Golla S, Anand C, Banda KS, Himabindu V, Vidyavathi S (2015) Reactivation and recycling of spent carbon using solvent desorption followed by thermal treatment (TR). J Mater Cycles Waste Manag 17(1):185–193. https://doi.org/10.1007/s10163-014-0237-y

    Article  Google Scholar 

  60. Toumi I, Djelad H, Chouli F, Benyoucef A (2022) Synthesis of PANI@ZnO hybrid material and evaluations in adsorption of congo red and methylene blue dyes: structural characterization and adsorption performance. J Inorg Organomet Polym Mater 32(1):112–121. https://doi.org/10.1007/s10904-021-02084-0

    Article  Google Scholar 

  61. Shokry H, Elkady M, Hamad H (2019) Nano activated carbon from industrial mine coal as adsorbents for removal of dye from simulated textile wastewater: Operational parameters and mechanism study. J Mater Res Technol 8(5):4477–4488. https://doi.org/10.1016/j.jmrt.2019.07.061

    Article  Google Scholar 

  62. Chen Q, Liu H, Yang Z, Tan D (2017) Regeneration performance of spent granular activated carbon for tertiary treatment of dyeing wastewater by Fenton reagent and hydrogen peroxide. J Mater Cycles Waste Manag 19(1):256–264. https://doi.org/10.1007/s10163-015-0410-y

    Article  Google Scholar 

  63. Moosavi S, Lai CW, Akbarzadeh O, Johan MR (2021) Recycled activated carbon-based materials for the removal of organic pollutants from wastewater. Top Mining Metall Mater Eng. https://doi.org/10.1007/978-3-030-68031-2_18

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Japan International Cooperation Agency (JICA) Scholarship. Appreciation is given to the Egypt–Japan University of Science and Technology, Egypt, to providing the devices and labs for conducting the different processes used in this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. D. Gohoho.

Ethics declarations

Conflict of interest

The authors declare there is no conflict of interest regarding the publication of this research manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gohoho, H.D., Noby, H., Hayashi, Ji. et al. Various acids functionalized polyaniline–peanut shell activated carbon composites for dye removal. J Mater Cycles Waste Manag 24, 1508–1523 (2022). https://doi.org/10.1007/s10163-022-01408-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-022-01408-7

Keywords

Navigation