Log in

Estimating individual fitness in the wild using capture–recapture data

  • Special Feature: Original article
  • Evolutionary demography: the dynamic and broad intersection of ecology and evolution
  • Published:
Population Ecology

Abstract

The concept of Darwinian fitness is central in evolutionary ecology, and its estimation has motivated the development of several approaches. However, measuring individual fitness remains challenging in empirical case studies in the wild. Measuring fitness requires a continuous monitoring of individuals from birth to death, which is very difficult to get in part because individuals may or may not be controlled at each reproductive event and recovered at death. Imperfect detection hampers kee** track of mortality and reproductive events over the whole lifetime of individuals. We propose a new statistical approach to estimate individual fitness while accounting for imperfect detection. Based on hidden process modelling of longitudinal data on marked animals, we show that standard metrics to quantify fitness, namely lifetime reproductive success, individual growth rate and lifetime individual contribution to population growth, can be extended to cope with imperfect detection inherent to most monitoring programs in the wild. We illustrate our approach using data collected on individual roe deer in an intensively monitored population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Andersen R, Gaillard JM, Linnell JDC, Duncan P (2000) Factors affecting maternal care in an income breeder, the European roe deer. J Anim Ecol 69:672–682

    Article  Google Scholar 

  • Barbraud C, Weimerskirch H (2005) Environmental conditions and breeding experience affect costs of reproduction in blue petrels. Ecology 86:682–692

    Article  Google Scholar 

  • Beauplet G, Barbraud C, Dabin W, Küssener C, Guinet C, Benton T (2006) Age-specific survival and reproductive performances in fur seals: evidence of senescence and individual quality. Oikos 430–441

  • Blomberg EJ, Sedinger JS, Nonne DV, Atamian MT (2013) Seasonal reproductive costs contribute to reduced survival of female greater sage-grouse. J Avian Biol 44:149–158

    Article  Google Scholar 

  • Brommer JE, Merilä J, Kokko H (2002) Reproductive timing and individual fitness. Ecol Lett 5:802–810

    Article  Google Scholar 

  • Brommer JE, Gustafsson L, Pietiäinen H, Merilä J (2004) Single-generation estimates of individual fitness as proxies for long-term genetic contribution. Am Nat 163:505–517

    Article  PubMed  Google Scholar 

  • Cam E, Link WA, Cooch EG, Monnat JY, Danchin E (2002) Individual covariation in life-history traits: seeing the trees despite the forest. Am Nat 159:96–105

    PubMed  Google Scholar 

  • Cam E, Aubry LM, Authier M (2016) The conundrum of heterogeneities in life history studies. Trends Ecol Evol 31:872–886

    Article  PubMed  Google Scholar 

  • Clutton-Brock TH (1988) Reproductive success. Studies of individual variation in contrasting breeding systems. University of Chicago Press, Chicago

    Google Scholar 

  • Coulson T, Benton TG, Lundberg P, Dall SR, Kendall BE, Gaillard JM (2006) Estimating individual contributions to population growth: evolutionary fitness in ecological time. Proc R Soc B Biol Sci 273:547–555

    Article  CAS  Google Scholar 

  • Cowen LLE, Besbeas P, Morgan BJT, Schwarz CJ (2017) Hidden Markov models for extended batch data. Biometrics. doi:10.1111/biom.12701

    Article  PubMed  Google Scholar 

  • Cubaynes S, Pradel R, Choquet R, Duchamp C, Gaillard JM, Lebreton JD, Marboutin E, Miquel C, Reboulet AM, Poillot C, Taberlet P, Gimenez O (2010) Importance of accounting for detection heterogeneity when estimating abundance: the case of French wolves. Conserv Biol 24:621–626

    Article  PubMed  Google Scholar 

  • Fisher RA (1930) The genetical theory of natural selection. Oxford University Press, Oxford

    Book  Google Scholar 

  • Gaillard JM, Sempéré AJ, Boutin JM, Van Laere G, Boisaubert B (1992) Effects of age and body weight on the proportion of females breeding in a population of roe deer (Capreolus capreolus). Can J Zool 70:1541–1545

    Article  Google Scholar 

  • Gaillard JM, Delorme D, Jullien JM (1993) Effects of cohort, sex, and birth date on body development of roe deer (Capreolus capreolus) fawns. Oecologia 94:57–61

    Article  PubMed  CAS  Google Scholar 

  • Gaillard JM, Andersen R, Delorme D, Linnell JDC (1998) Family effects on growth and survival of juvenile roe deer. Ecology 79:2878–2889

    Article  Google Scholar 

  • Gaillard JM, Festa-Bianchet M, Delorme D, Jorgenson J (2000) Body mass and individual fitness in female ungulates: bigger is not always better. Proc R Soc B Biol Sci 267:471–477

    Article  CAS  Google Scholar 

  • Gaillard JM, Hewison AJM, Klein F, Plard F, Douhard M, Davison R, Bonenfant C (2013) How does climate change influence demographic processes of widespread species? Lessons from the comparative analysis of contrasted populations of roe deer. Ecol Lett 16:48–57

    Article  PubMed  Google Scholar 

  • Gimenez O, Choquet R (2010) Individual heterogeneity in studies on marked animals using numerical integration: capture–recapture mixed models. Ecology 91:951–957

    Article  PubMed  CAS  Google Scholar 

  • Gimenez O, Rossi V, Choquet R, Dehais C, Doris B, Varella H, Vila JP, Pradel R (2007) State-space modelling of data on marked individuals. Ecol Model 206:431–438

    Article  Google Scholar 

  • Gimenez O, Viallefont A, Charmantier A, Pradel R, Cam E, Brown CR, Anderson MD, Brown MB, Covas R, Gaillard JM (2008) The risk of flawed inference in evolutionary studies when detectability is less than one. Am Nat 172:441–448

    Article  PubMed  Google Scholar 

  • Gimenez O, Lebreton JD, Gaillard JM, Choquet R, Pradel R (2012) Estimating demographic parameters using hidden process dynamic models. Theor Popul Biol 82:307–316

    Article  PubMed  Google Scholar 

  • Grosbois V, Gimenez O, Gaillard JM, Pradel R, Barbraud C, Clobert J, Møller AP, Weimerskirch H (2008) Assessing the impact of climate variation on survival in vertebrate populations. Biol Rev 83:357–399

    Article  PubMed  CAS  Google Scholar 

  • Hamel S, Côté SD (2008) Trade-offs in activity budget in an alpine ungulate: contrasting lactating and nonlactating females. Anim Behav 75:217–227

    Article  Google Scholar 

  • Hamel S, Yoccoz NG, Gaillard JM (2017) Assessing variation in life-history tactics within a population using mixture regression models: a practical guide for evolutionary ecologists. Biol Rev 92:754–775

    Article  PubMed  Google Scholar 

  • Hamilton WD (1966) The moulding of senescence by natural selection. J Theor Biol 12:12–45

    Article  PubMed  CAS  Google Scholar 

  • Hernández-Matías A, Real J, Pradel R, Ravayrol A, Vincent-Martin N (2011) Effects of age, territoriality and breeding on survival of Bonelli’s eagle Aquila fasciata. Ibis 153:846–857

    Article  Google Scholar 

  • Käär P, Jokela J (1998) Natural selection on age-specific fertilities in human females: comparison of individual-level fitness measures. Proc R Soc B Biol Sci 265:2415–2420

    Article  Google Scholar 

  • King R, Morgan BJT, Gimenez O, Brooks SP (2010) Bayesian analysis for population ecology. Chapman and Hall/CRC, Boca Raton

    Google Scholar 

  • Korpelainen H (2000) Fitness, reproduction and longevity among European aristocratic and rural Finnish families in the 1700s and 1800s. Proc R Soc B Biol Sci 267:1765–1770

    Article  CAS  Google Scholar 

  • Lahdenpera M, Lummaa V, Helle S, Tremblay M, Russell AF (2004) Fitness benefits of prolonged post-reproductive lifespan in women. Nature 428:178–181

    Article  PubMed  CAS  Google Scholar 

  • Le Bohec C, Gauthier-Clerc M, Gremillet D, Pradel R, Béchet A, Gendner JP, Le Maho Y (2007) Population dynamics in a long-lived seabird: I. Impact of breeding activity on survival and breeding probability in unbanded king penguins. J Anim Ecol 76:1149–1160

    Article  PubMed  Google Scholar 

  • Lebreton JD, Burnham KP, Clobert J, Anderson DR (1992) Modeling survival and testing biological hypotheses using marked animals: a unified approach with case studies. Ecol Monogr 62:67–118

    Article  Google Scholar 

  • Lebreton JD, Nichols JD, Barker RJ, Pradel R, Spendelow JA (2009) Modeling individual animal histories with multistate capture–recapture models. Adv Ecol Res 41:87–173

    Article  Google Scholar 

  • Lenski RE, Service PM (1982) The statistical analysis of population growth rates calculated from schedules of survivorship and fecundity. Ecology 63:655–662

    Article  Google Scholar 

  • Maniscalco JM, Springer AM, Parker P (2010) High natality rates of endangered Steller sea lions in Kenai Fjords, Alaska and perceptions of population status in the Gulf of Alaska. PLoS One 5:e10076

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mauget C, Mauget R, Sempéré AJ (1997) Metabolic rate in female European roe deer (Capreolus capreolus): incidence of reproduction. Can J Zool Can Zool 75:731–739

    Article  Google Scholar 

  • McGraw JB, Caswell H (1996) Estimation of individual fitness from life-history data. Am Nat 147:47–64

    Article  Google Scholar 

  • McLoughlin PD, Gaillard JM, Boyce MS, Bonenfant C, Messier F, Duncan P, Delorme D, Moorter BV, Saïd S, Klein F (2007) Lifetime reproductive success and composition of the home range in a large herbivore. Ecology 88:3192–3201

    Article  PubMed  CAS  Google Scholar 

  • Moorad JA (2013) A demographic transition altered the strength of selection for fitness and age-specific survival and fertility in a 19th century American population. Evol Int J Org Evol 67:1622–1634

    Article  Google Scholar 

  • Morano S, Stewart KM, Sedinger JS, Nicolai CA, Vavra M (2013) Life-history strategies of North American elk: trade-offs associated with reproduction and survival. J Mamm 94:162–172

    Article  Google Scholar 

  • Neuhaus P, Ruckstuhl KE (2002) Foraging behaviour in Alpine ibex (Capra ibex): consequences of reproductive status, body size, age and sex. Ethol Ecol Evol 14:373–381

    Article  Google Scholar 

  • Newman KB, Buckland ST, Lindley ST, Thomas L, Fernández C (2006) Hidden process models for animal population dynamics. Ecol Appl 16:74–86

    Article  PubMed  CAS  Google Scholar 

  • Newton I (1989) Lifetime reproduction in birds. Academic Press, London

    Google Scholar 

  • Nichols JD (1992) Capture–recapture models. Bioscience 42:94–102

    Article  Google Scholar 

  • Péron G, Gaillard JM, Barbraud C, Bonenfant C, Charmantier A, Choquet R, Coulson T, Grosbois V, Loison A, Marzolin G, Owen-Smith N, Pardo D, Plard F, Pradel R, Toïgo C, Gimenez O (2016) Evidence of reduced individual heterogeneity in adult survival of long-lived species. Evol Int J org Evol 70:2909–2914

    Article  Google Scholar 

  • Pettorelli N, Gaillard JM, Yoccoz NG, Duncan P, Maillard D, Delorme D, Van Laere G, Toïgo C (2005) The response of fawn survival to changes in habitat quality varies according to cohort quality and spatial scale. J Anim Ecol 74:972–981

    Article  Google Scholar 

  • Plard F, Bonenfant C, Delorme D, Gaillard JM (2012) Modeling reproductive trajectories of roe deer females: fixed or dynamic heterogeneity? Theor Popul Biol 82:317–328

    Article  PubMed  CAS  Google Scholar 

  • Plummer M (2003) JAGS: a program for analysis of Bayesian graphical models using Gibbs sampling. In: Hornik K, Leisch F, Zeileis A (eds) Proceedings of the 3rd international workshop on distributed statistical computing, Vienna, 20–22 March

  • Pradel R (2005) Multievent: an extension of multistate capture–recapture models to uncertain states. Biometrics 61:442–447

    Article  PubMed  Google Scholar 

  • Rose KE, Clutton-Brock TH, Guinness FE (1998) Cohort variation in male survival and lifetime breeding success in red deer. J Anim Ecol 67:979–986

    Article  PubMed  CAS  Google Scholar 

  • Rouan L, Gaillard JM, Guédon Y, Pradel R (2009) Estimation of lifetime reproductive success when reproductive status cannot always be assessed. In: Thomson DL, Cooch EG, Conroy MJ (eds) Modeling demographic processes in marked populations. Springer, USA, pp 867–879

    Chapter  Google Scholar 

  • Royle JA (2008) Modeling individual effects in the Cormack–Jolly–Seber model: a state-space formulation. Biometrics 64:364–370

    Article  PubMed  Google Scholar 

  • Ruckstuhl KE, Neuhaus P (2002) Sexual segregation in ungulates: a comparative test of three hypotheses. Biol Rev 77:77–96

    Article  PubMed  CAS  Google Scholar 

  • Schofield MR, Barker RJ (2008) A unified capture–recapture framework. J Agric Biol Environ Stat 13:458–477

    Article  Google Scholar 

  • Stoelting RE, Gutiérrez RJ, Kendall WL, Peery MZ (2014) Life-history tradeoffs and reproductive cycles in spotted owls. Auk 132:46–64

    Article  Google Scholar 

  • Tuljapurkar S, Steiner UK, Orzack SH (2009) Dynamic heterogeneity in life histories. Ecol Lett 12:93–106

    Article  PubMed  Google Scholar 

  • van Noordwijk AJ, de Jong G (1986) Acquisition and allocation of resources: their influence on variation in life history tactics. Am Nat 128:137–142

    Article  Google Scholar 

  • van de Pol M, Verhulst S (2006) Age-dependent traits: a new statistical model to separate within- and between-individual effects. Am Nat 167:766–773

    PubMed  Google Scholar 

  • van de Pol M, Wright J (2009) A simple method for distinguishing within-versus between-subject effects using mixed models. Anim Behav 77:753–758

    Article  Google Scholar 

  • Weladji RB, Loison A, Gaillard JM, Holand O, Mysterud A, Yoccoz NG, Nieminen M, Stenseth NC (2008) Heterogeneity in individual quality overrides costs of reproduction in female reindeer. Oecologia 156:237–247

    Article  PubMed  Google Scholar 

  • Wilson AJ, Nussey DH (2010) What is individual quality? An evolutionary perspective. Trends Ecol Evol 25:207–214

    Article  PubMed  Google Scholar 

  • Zucchini W, MacDonald IL, Langrock R (2016) Hidden Markov models for time series: an introduction using R, 2nd edn. Chapman and Hall/CRC, Boca Raton

    Book  Google Scholar 

Download references

Acknowledgements

This is a contribution of the GDR Statistical Ecology. OG was supported by the French National Research Agency with a Grant ANR-16-CE02-0007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Gimenez.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 140 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gimenez, O., Gaillard, JM. Estimating individual fitness in the wild using capture–recapture data. Popul Ecol 60, 101–109 (2018). https://doi.org/10.1007/s10144-017-0598-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10144-017-0598-x

Keywords

Navigation