Log in

Early-life density-dependence effects on growth and survival in subantarctic fur seals

  • Original article
  • Published:
Population Ecology

Abstract

Understanding the regulation of natural populations has been a long-standing research program in ecology. Current knowledge on marine mammals and seabirds is biased toward the adult component of populations and lacking are studies investigating the juvenile component. Our goal was to estimate demographic parameters on the pre-weaning stage of a subantarctic fur seal (Arctocephalus tropicalis) population on Amsterdam Island, suspected to be regulated by density-dependence. The influence of abundance on growth parameters (length and weight) and survival was assessed over a study period spanning 16 years. We evidenced a negative trend in population growth rate when density increased. Density-dependence models were favored for pup body size and mass growth. Abundance had a clear influence on body length at high population-density, pups grew slower and were smaller at weaning than pups born in years with low population density. Abundance partly explained pup body mass variation and a weak effect was detected on pre-weaning survival. The causal mechanisms may be increased competition for food resources between breeding females, leading to a reduction of maternal input to their pups. Our results suggested that pup favored survival over growth and the development of their diving abilities in order to withstand the extreme fasting periods that are characteristic of this fur seal population. This analysis provides significant insight of density-dependent processes on early-life demographic parameters of a long lived and top-predator species, and more specifically on the pre-weaning stage with important consequences for our understanding of individual long-term fitness and population dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19:716–723

    Article  Google Scholar 

  • Arnould JP, Boyd IL, Warneke RM (2003) Historical dynamics of the Australian fur seal population: evidence of regulation by man? Can J Zool 81:1428–1436

    Article  Google Scholar 

  • Authier M, Cam E, Guinet C (2011) Selection for increased body length in Subantarctic fur seals on Amsterdam Island. J Evol Biol 24:607–616

    Article  CAS  PubMed  Google Scholar 

  • Beauplet G (2005) Variations des performances de pêche et des performances démographiques des femelles otaries à fourrure de l’île d’Amsterdam (Arctocephalus tropicalis): influence de la qualité individuelle et des conditions environnementales. Unpublished PhD thesis. University of La Rochelle, France (in French with English abstract)

  • Beauplet G, Guinet C (2007) Phenotypic determinants of individual fitness in female fur seals: larger is better. Proc R Soc Lond B 274:1877–1883

    Article  Google Scholar 

  • Beauplet G, Guinet C, Arnould JP (2003) Body composition changes, metabolic fuel use, and energy expenditure during extended fasting in subantarctic fur seal (Arctocephalus tropicalis) pups at Amsterdam Island. Physiol Biochem Zool 76:262–270

    Article  PubMed  Google Scholar 

  • Beauplet G, Dubroca L, Guinet C, Cherel Y, Dabin W, Gagne C, Hindell M (2004) Foraging ecology of subantarctic fur seals Arctocephalus tropicalis breeding on Amsterdam Island: seasonal changes in relation to maternal characteristics and pup growth. Mar Ecol Prog Ser 273:211–225

    Article  Google Scholar 

  • Beauplet G, Barbraud C, Chambellant M, Guinet C (2005) Interannual variation in the post-weaning and juvenile survival of subantarctic fur seals: influence of pup sex, growth rate and oceanographic conditions. J Anim Ecol 74:1160–1172

    Article  Google Scholar 

  • Beauplet G, Barbraud C, Dabin W, Kussener C, Guinet C (2006) Age-specific survival and reproductive performances in fur seals: evidence of senescence and individual quality. Oikos 112:430–441

    Article  Google Scholar 

  • Berryman AA (2004) Limiting factors and population regulation. Oikos 105:667–670

    Article  Google Scholar 

  • Berryman AA, Lima Arce M, Hawkins BA (2002) Population regulation, emergent properties, and a requiem for density dependence. Oikos 99:600–606

    Article  Google Scholar 

  • Bester MN (1995) Reproduction in the female subantarctic fur seal, Arctocephalus tropicalis. Mar Mammal Sci 11:362–375

    Article  Google Scholar 

  • Bonenfant C, Gaillard JM, Coulson T, Festa-Bianchet M, Loison A, Garel M, Loe LE, Blanchard P, Pettorelli N, Owen-Smith N, Du Toit J, Duncan P (2009) Empirical evidence of density-dependence in populations of large herbivores. In: Caswell H (ed) Advances in ecological research 41. Academic Press, London, pp 313–357

    Chapter  Google Scholar 

  • Bossart GD (2011) Marine mammals as sentinel species for oceans and human health. Vet Pathol 48:676–690

    Article  CAS  PubMed  Google Scholar 

  • Bowen WD (1997) Role of marine mammals in aquatic ecosystems. Mar Ecol Prog Ser 158:74

    Article  Google Scholar 

  • Bowen WD, Beck CA, Austin DA (2002) Pinniped ecology. In: Perrin WF, Würsig B, Thewissen JGM (eds) Encyclopedia of marine mammals. Academic Press, San Diego, pp 852–861

    Google Scholar 

  • Boyd IL (1999) Foraging and provisioning in Antarctic fur seals interannual variability in time-energy budgets. Behav Ecol 10:198–208

    Article  Google Scholar 

  • Boyd I, Wanless S, Camphuysen CJ (2006) Top predators in marine ecosystems: their role in monitoring and management. Conserv Biol 12:362

    Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer, New York

    Google Scholar 

  • Cassini MH (1999) The evolution of reproductive systems in pinnipeds. Behav Ecol 10:612–616

    Article  Google Scholar 

  • Chambellant M, Beauplet G, Guinet C, Georges JY (2003) Long-term evaluation of pup growth and preweaning survival rates in subantarctic fur seals, Arctocephalus tropicalis, on Amsterdam Island. Can J Zool 81:1222–1232

    Article  Google Scholar 

  • Chilvers BL, Robertson BC, Wilkinson IS, Duignan PJ, Gemmell NJ (2005) Male harassment of female New Zealand sea lions, Phocarctos hookeri: mortality, injury, and harassment avoidance. Can J Zool 83:642–648

    Article  Google Scholar 

  • Chilvers BL, Robertson BC, Wilkinson IS, Duignan PJ (2007) Growth and survival of New Zealand sea lions, Phocarctos hookeri: birth to 3 months. Polar Biol 30:459–469

    Article  Google Scholar 

  • Choquet R, Lebreton JD, Gimenez O, Reboulet AM, Pradel R (2009a) U-CARE: Utilities for performing goodness of fit tests and manipulating CApture–REcapture data. Ecography 32:1071–1074

    Article  Google Scholar 

  • Choquet R, Rouan L, Pradel R (2009b) Program E-SURGE: a software application for fitting multievent models. In: Thomson DL, Cooch EG, Conroy MJ (eds) Modeling demographic processes in marked populations. Springer, New York, pp 845–865

    Chapter  Google Scholar 

  • Clutton-Brock TH, Major M, Albon SD, Guinness FE (1987) Early development and population dynamics in red deer. I. Density-dependent effects on juvenile survival. J Anim Ecol 56:53–67

    Article  Google Scholar 

  • Dabin W, Beauplet G, Crespo EA, Guinet C (2004) Age structure, growth, and demographic parameters in breeding-age female subantarctic fur seals, Arctocephalus tropicalis. Can J Zool 82:1043–1050

    Article  Google Scholar 

  • Delean S, Brook BW, Bradshaw CJ (2013) Ecologically realistic estimates of maximum population growth using informed Bayesian priors. Methods Ecol Evol 4:34–44

    Article  Google Scholar 

  • Drake JM (2005) Density-dependent demographic variation determines extinction rate of experimental populations. PLoS Biol 3:e222

    Article  PubMed  PubMed Central  Google Scholar 

  • Eberhardt LL (1977) Optimal policies for conservation of large mammals, with special reference to marine ecosystems. Environ Conserv 4:205–212

    Article  Google Scholar 

  • Eberhardt LL (2002) A paradigm for population analysis of long-lived vertebrates. Ecology 83:2841–2854

    Article  Google Scholar 

  • Estes JA (2009) Ecological effects of marine mammals. In: Perrin WF, Würsig B, Thewissen JGM (eds) Encyclopedia of marine mammals, 2nd edn. Elsevier, San Diego, pp 357–361

    Chapter  Google Scholar 

  • Estes JA, Peterson CH, Steneck RS (2010) Some effects of apex predators in higher–latitude coastal oceans. In: Terborgh J, Estes JA (eds) Trophic cascades predators, prey, and the changing dynamics of nature. Island Press, Washington, pp 37–53

    Google Scholar 

  • Ferrari MA, Campagna C, Condit R, Lewis MN (2013) The founding of a southern elephant seal colony. Mar Mammal Sci 29:407–423

    Article  Google Scholar 

  • Festa-Bianchet M, Jorgenson JT, Bérubé CH, Portier C, Wishart WD (1997) Body mass and survival of bighorn sheep. Can J Zool 75:1372–1379

    Article  Google Scholar 

  • Gaillard JM, Festa-Bianchet M, Yoccoz NG, Loison A, Toïgo C (2000) Temporal variation in fitness components and population dynamics of large herbivores. Annu Rev Ecol Syst 31:367–393

    Article  Google Scholar 

  • Gastebois C, Viviant M, Guinet C (2011) Ontogeny of aquatic behaviours in Antarctic fur seal (Arctocephalus gazella) pups in relation to growth performances at Kerguelen Islands. Polar biol 34:1097–1103

    Article  Google Scholar 

  • Gelman A (2006) Prior distributions for variance parameters in hierarchical models. Bayesian Anal 1:515–534

    Article  Google Scholar 

  • Gelman A, Rubin DB (1992) Inference from iterative simulation using multiple sequences. Stat Sci 4:457–472

    Article  Google Scholar 

  • Gelman A, Jakulin A, Pittau MG, Su YS (2008) A weakly informative default prior distribution for logistic and other regression models. Ann. Appl Stat 2:1360–1383

    Article  Google Scholar 

  • Gentry RL, Kooyman GL (2014) Fur seals: maternal strategies on land and at sea. Princeton University Press, Princeton

    Google Scholar 

  • Georges JY, Guinet C (2000a) Early mortality and perinatal growth in the subantarctic fur seal (Arctocephalus tropicalis) on Amsterdam Island. J Zool 251:277–287

    Article  Google Scholar 

  • Georges JY, Guinet C (2000b) Maternal care in the subantarctic fur seals on Amsterdam Island. Ecology 81:295–308

    Article  Google Scholar 

  • Georges JY, Guinet C (2001) Prenatal investment in the subantarctic fur seal, Arctocephalus tropicalis. Can J Zool 79:601–609

    Article  Google Scholar 

  • Georges JY, Sevot X, Guinet C (1999) Fostering in a subantarctic fur seal. Mammalia 63:384–388

    Google Scholar 

  • Gregg WW, Rousseaux CS (2014) Decadal trends in global pelagic ocean chlorophyll: A new assessment integrating multiple satellites, in situ data, and models. J Geophys Res. Oceans 119:5921–5933

    PubMed  PubMed Central  Google Scholar 

  • Grosbois V, Gimenez O, Gaillard JM, Pradel R, Barbraud C, Clobert J, Møller AP, Weimerskirch H (2008) Assessing the impact of climate variation on survival in vertebrate populations. Biol Rev 83:357–399

    Article  CAS  PubMed  Google Scholar 

  • Guinet C, Georges JY (2000) Growth in pups of the subantarctic fur seal (Arctocephalus tropicalis) on Amsterdam Island. J Zool 251:289–296

    Article  Google Scholar 

  • Guinet C, Jouventin P, Georges JY (1994) Long term population changes of fur seals Arctocephalus gazella and Arctocephalus tropicalis on subantarctic (Crozet) and subtropical (St. Paul and Amsterdam) islands and their possible relationship to El Niño Southern Oscillation. Antarct Sci 6:473–478

    Article  Google Scholar 

  • Guinet C, Roux JP, Bonnet M, Mison V (1998) Effect of body size, body mass, and body condition on reproduction of female South African fur seals (Arctocephalus pusillus) in Namibia. Can J Zool 76:1418–1424

    Article  Google Scholar 

  • Guinet C, Lea MA, Goldsworthy SD (2000) Mass change in Antarctic fur seal (Arctocephalus gazella) pups in relation to maternal characteristics at the Kerguelen Islands. Can J Zool 78:476–483

    Article  Google Scholar 

  • Guinet C, Servera N, Deville T, Beauplet G (2005) Changes in subantarctic fur seal pups’ activity budget and diving behaviours throughout the rearing period. Can J Zool 83:962–970

    Article  Google Scholar 

  • Hanski I, Foley P, Hassell M (1996) Random walks in a metapopulation: how much density dependence is necessary for long-term persistence? J Anim Ecol 65:274–282

    Article  Google Scholar 

  • Harcourt R (1992) Factors affecting early mortality in the South American fur seal (Arctocephalus australis) in Peru: density-related effects and predation. J Zool 226:259–270

    Article  Google Scholar 

  • Herrando-Pérez S, Delean S, Brook BW, Bradshaw CJ (2012) Strength of density feedback in census data increases from slow to fast life histories. Ecol Evol 2:1922–1934

    Article  PubMed  PubMed Central  Google Scholar 

  • Hindell M, Bradshaw C, Harcourt R, Guinet C (2003) 17 ecosystem monitoring: are seals a potential tool for monitoring change in marine systems? In: Gales N, Hindell M, Kirkwood R (eds) Marine mammals: Fisheries, tourism and management issues. CSIRO Publishing, Collingwood, pp 330–343

    Google Scholar 

  • Jenss RM, Bayley N (1937) A mathematical method for studying the growth of a child. Hum Biol 9:556–563

    Google Scholar 

  • Jessup DA, Miller M, Ames J, Harris M, Kreuder C, Conrad P, Mazet JK (2004) Southern sea otter as a sentinel of marine ecosystem health. EcoHealth 1:239–245

    Article  Google Scholar 

  • Knape J, de Valpine P (2012) Are patterns of density dependence in the Global Population Dynamics Database driven by uncertainty about population abundance? Ecol Lett 15:17–23

    Article  PubMed  Google Scholar 

  • Lebreton JD (2009) Assessing density-dependence: where are we left? In: Thomson DL, Cooch EG, Conroy MJ (eds) Modeling demographic processes in marked populations. Springer, Boston, pp 19–42

    Chapter  Google Scholar 

  • Lebreton JD, Gimenez O (2013) Detecting and estimating density dependence in wildlife populations. J Wildl Manage 77:12–23

    Article  Google Scholar 

  • Lebreton JD, Burnham KP, Clobert J, Anderson DR (1992) Modeling survival and testing biological hypotheses using marked animals: a unified approach with case studies. Ecol Monogr 62:67–118

    Article  Google Scholar 

  • Luque SP, Miller EH, Arnould JP, Chambellant M, Guinet C (2007) Ontogeny of body size and shape of Antarctic and subantarctic fur seals. Can J Zool 85:1275–1285

    Article  Google Scholar 

  • May R (1999) Unanswered questions in ecology. Philos T Roy Soc Lon B 354:1951–1959

    Article  CAS  Google Scholar 

  • McLaren IA (1993) Growth in pinnipeds. Biol Rev 68:1–79

    Article  CAS  PubMed  Google Scholar 

  • Moore SE (2008) Marine mammals as ecosystem sentinels. J Mamm 89:534–540

    Article  Google Scholar 

  • Niel C, Lebreton JD (2005) Using demographic invariants to detect overharvested bird populations from incomplete data. Conserv Biol 19:826–835

    Article  Google Scholar 

  • Oosthuizen WC, de Bruyn PN, Wege M, Bester MN (2015) Geographic variation in subantarctic fur seal pup growth: linkages with environmental variability and population density. J Mammal 97:347–360

    Article  Google Scholar 

  • Pannekoek J, van Strien AJ (2001) TRIM 3 Manual. Trends and Indices for Monitoring Data. Statistics Netherlands, Voorburg. https://www.cbs.nl/en-gb/society/nature-and-environment/indices-and-trends--trim--. Accessed 01 Jan 2015

  • Plummer M (2003) JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling. https://www.r-project.org/conferences/DSC-2003/Drafts/Plummer.pdf. Accessed 20 Jul 2016

  • Plummer M (2015) rjags: Bayesian Graphical Models using MCMC. R package version 3–15. http://CRAN.R-project.org/package=rjags. Accessed 20 Jul 2016

  • Pradel R (2005) Multievent: an extension of multistate capture–recapture models to uncertain states. Biometrics 61:442–447

    Article  PubMed  Google Scholar 

  • Pradel R, Sanz-Aguilar A (2012) Modeling trap-awareness and related phenomena in capture–recapture studies. Plos One 7:1–4

    Article  Google Scholar 

  • R Development Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org. Accessed 20 Jul 2016

  • Rotella JJ, Link WA, Nichols JD, Hadley GL, Garrott RA, Proffitt KM (2009) An evaluation of density-dependent and density-independent influences on population growth rates in Weddell seals. Ecology 90:975–984

    Article  PubMed  Google Scholar 

  • Roux JP (1986) Sociobiologie de l’otarie: Arctocephalus tropicalis. Unpublished PhD thesis, Université Montpellier 2, Montpellier (in French with English abstract)

  • Sæther BE, Coulson T, Grøtan V, Engen S, Altwegg R, Armitage K, Barbraud C, Becker PH, Blumstein DT, Dobson S, Festa-Bianchet M, Gaillard JM, Jenkins A, Jones C, Nicoll MAC, Norris K, Oli MK, Ozgul A, Weimerskirch H (2013) How life history influences population dynamics in fluctuating environments. Am Nat 182:743–759

    Article  PubMed  Google Scholar 

  • Sergio F, Schmitz OJ, Krebs CJ, Holt RD, Heithaus MR, Wirsing AJ, Ripple WJ, Ritchie E, Ainley D, Oro D, Jhala Y, Hiraldo F, Korpimäki E (2014) Towards a cohesive, holistic view of top predation: a definition, synthesis and perspective. Oikos 123:1234–1243

    Article  Google Scholar 

  • Sibly RM, Barker D, Denham MC, Hone J, Pagel M (2005) On the regulation of populations of mammals, birds, fish, and insects. Science 309:607–610

    Article  CAS  PubMed  Google Scholar 

  • Sinclair ARE (2003) Mammal population regulation, keystone processes and ecosystem dynamics. Philos T Roy Soc Lon B 358:1729–1740

    Article  CAS  Google Scholar 

  • Skalski JR, Hoffmann A, Smith SG (1993) Testing the significance of individual-and cohort-level covariates in animal survival studies. In: Lebreton JD, North PM (eds) Marked individuals in the study of bird population, Birkhäuser Verlag, Basle, pp 9–28

    Google Scholar 

  • Spiegelhalter DJ, Best NG, Carlin BP, Van Der Linde A (2002) Bayesian measures of model complexity and fit. J Roy Stat Soc B 64:583–639

    Article  Google Scholar 

  • Spiegelhalter D, Thomas A, Best N, Lunn D (2007) OpenBUGS user manual, version 3.0.2. MRC Biostatistics Unit, Cambridge

  • Staniland IJ, Gales N, Warren NL, Robinson SL, Goldsworthy SD, Casper RM (2010) Geographical variation in the behaviour of a central place forager: Antarctic fur seals foraging in contrasting environments. Mar Biol 157:2383–2396

    Article  Google Scholar 

  • Tollu B (1974) L’otarie de l’île d’Amsterdam Arctocephalus tropicalis (Gray 1872). Unpublished PhD thesis, Université de Paris 7, Paris (in French with English abstract)

  • Trillmich F (1986) Maternal investment and sex-allocation in the Galapagos fur seal (Arctocephalus galapagoensis). Behav Ecol Sociobiol 19:157–164

    Google Scholar 

  • Trillmich F (1996) Parental investment in pinnipeds. Adv Stud Behav 25:533–577

    Article  Google Scholar 

  • Verrier D (2007) Extreme fasting in subantartic fue seal (Arctocephalus tropicalis) pups: Physiological adaptations and ecological implications. Unpublished PhD thesis, Université Louis Pasteur, Strasbourg (in French with English abstract)

  • Verrier D, Groscolas R, Guinet C, Arnould JP (2009) Physiological response to extreme fasting in subantarctic fur seal (Arctocephalus tropicalis) pups: metabolic rates, energy reserve utilization, and water fluxes. Am J Physiol Reg I(297):R1582–R1592

    Article  Google Scholar 

  • Verrier D, Groscolas R, Guinet C, Arnould JP (2011a) Development of fasting abilities in subantarctic fur seal pups: balancing the demands of growth under extreme nutritional restrictions. Funct Ecol 25:704–717

    Article  Google Scholar 

  • Verrier D, Guinet C, Authier M, Tremblay Y, Shaffer S, Costa DP, Groscolas R, Arnould JP (2011b) The ontogeny of diving abilities in subantarctic fur seal pups: developmental trade-off in response to extreme fasting? Funct Ecol 25:818–828

    Article  Google Scholar 

  • Wells RS, Rhinehart HL, Hansen LJ Sweeney J, Townsend F, Stone R, Casper DR, Scott M, Hohn A, Rowles T (2004) Bottlenose dolphins as marine ecosystem sentinels: develo** a health monitoring system. EcoHealth 1:246–254

    Article  Google Scholar 

  • Williams R, Vikingsson GA, Gislason A, Lockyer C, New L, Thomas L, Hammond PS (2013) Evidence for density-dependent changes in body condition and pregnancy rate of North Atlantic fin whales over four decades of varying environmental conditions. ICES J Mar Sci 70:1273–1280

    Article  Google Scholar 

Download references

Acknowledgements

We thank the field workers involved in missions on Amsterdam Island for collecting the data. The long-term demographic study was supported by the French Polar Institute IPEV (program No 109, resp. H. Weimerskirch), Terres Australes et Antarctiques Françaises and Zone Atelier Antarctique et Subantarctique (CNRS-INEE) Handling and manipulation of all animals were approved by the IPEV ethics committee. All animals in this study were cared for in accordance with its guidelines. We thank D. Besson for the data management. We thank N.G. Yoccoz for constructive comments on earlier drafts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Barbraud.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 763 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pacoureau, N., Authier, M., Delord, K. et al. Early-life density-dependence effects on growth and survival in subantarctic fur seals. Popul Ecol 59, 139–155 (2017). https://doi.org/10.1007/s10144-017-0573-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10144-017-0573-6

Keywords

Navigation