Log in

PLG-g-mPEG Mediated Multifunctional Nanoparticles for Photoacoustic Imaging Guided Combined Chemo/Photothermal Antitumor Therapy

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Under laser irradiation, photothermal therapy (PTT) effectively ablates tumors above 50 °C. However, hyperthermia can cause additional damage due to the inevitable heat spread to surrounding healthy tissue. Herein, nanoparticles named as GI@P NPs were designed for enhanced PTT with heat shock protein 90 (HSP90) inhibition at temperatures below 50 °C to achieve optimal cancer therapy and avoid surrounding damage. GI@P NPs were done by co-loading Garcinia cambogia acid (GA) and photosensitizer IR783 in polymer PLG-g-mPEG to form a nanomedicine, where IR783 with excellent photoacoustic (PA) signal acted as an excellent photothermal therapeutic agent that converted the laser energy into heat to kill tumor cells, GA was used as antitumor drug for chemotherapy and an inhibitor of HSP90 to overcome the heat resistance of tumors for efficient cryo-photothermal therapy, and PLG-g-mPEG can encapsulate IR783 and GA to increase biocompatibility and accumulate effectively in the tumor. After GI@P NPs were injected into the mice, we could observe that the PA signals gradually increased in the tumor region and showed the strongest PA signals at 12 h. Under laser irradiation, the tumor temperature of the mice could raise to about 43.5 °C, and the tumor was significantly inhibited after long-term monitoring by PA imaging. As a result, gentle PTT produced by GI@P NPs exhibited good antitumor effects at relatively low temperature and minimized nonspecific thermal damage to normal tissues. The GI@P NPs as nanomedicine enriched our understanding of various applications of polymeric carriers, especially in the biomedical field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhou, Z.; Yan, Y.; Hu, K.; Zou, Y.; Li, Y.; Ma, R.; Zhang, Q.; Cheng, Y. Autophagy inhibition enabled efficient photothermal therapy at a mild temperature. Biomaterials 2017, 141, 116–124.

    Article  CAS  PubMed  Google Scholar 

  2. Nam, J.; Son, S.; Ochyl, L. J.; Kuai, R.; Schwendeman, A.; Moon, J. J. Chemo-photothermal therapy combination elicits anti-tumor immunity against advanced metastatic cancer. Nat. Commun. 2018, 9, 1074.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Sun, Q.; Tang, K.; Song, L.; Li, Y.; Pan, W.; Li, N.; Tang, B. Covalent organic framework based nanoagent for enhanced mild-temperature photothermal therapy. Biomater. Sci. 2021, 9, 7977–7983.

    Article  CAS  PubMed  Google Scholar 

  4. Hu, K.; **e, L.; Zhang, Y.; Hanyu, M.; Yang, Z.; Nagatsu, K.; Suzuki, H.; Ouyang, J.; Ji, X.; Wei, J.; Xu, H.; Farokhzad, O. C.; Liang, S. H.; Wang, L.; Tao, W.; Zhang, M. R. Marriage of black phosphorus and Cu2+ as effective photothermal agents for PET-guided combination cancer therapy. Nat. Commun. 2020, 11, 2778.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pan, G. Y.; Jia, H. R.; Zhu, Y. X.; Wang, R. H.; Wu, F. G.; Chen, Z. Dual channel activatable cyanine dye for mitochondrial imaging and mitochondria-targeted cancer theranostics. ACS Biomater. Sci. Eng. 2017, 3, 3596–3606.

    Article  CAS  PubMed  Google Scholar 

  6. Shi, C.; Wu, J. B.; Pan, D. Review on near-infrared heptamethine cyanine dyes as theranostic agents for tumor imaging, targeting, and photodynamic therapy. J. Biomed. Opt. 2016, 21, 50901.

    Article  PubMed  Google Scholar 

  7. Wang, J.; Sun, J.; Wang, Y.; Chou, T.; Zhang, Q.; Zhang, B.; Ren, L.; Wang, H. Gold nanoframeworks with mesopores for Raman-photoacoustic imaging and photo-chemo tumor therapy in the second near-infrared biowindow. Adv. Funct. Mater. 2020, 30, 1908825.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhen, X.; Cheng, P.; Pu, K. Recent advances in cell membrane-camouflaged nanoparticles for cancer phototherapy. Small 2019, 15, e1804105.

    Article  PubMed  Google Scholar 

  9. Huang, L.; Li, Y.; Du, Y.; Zhang, Y.; Wang, X.; Ding, Y.; Yang, X.; Meng, F.; Tu, J.; Luo, L.; Sun, C. Mild photothermal therapy potentiates anti-PD-L1 treatment for immunologically cold tumors via an all-in-one and all-in-control strategy. Nat. Commun. 2019, 10, 4871.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ying, W.; Zhang, Y.; Gao, W.; Cai, X.; Wang, G.; Wu, X.; Chen, L.; Meng, Z.; Zheng, Y.; Hu, B.; Lin, X. Hollow magnetic nanocatalysts drive starvation-chemodynamic-hyperthermia synergistic therapy for tumor. ACS Nano 2020, 14, 9662–9674.

    Article  CAS  PubMed  Google Scholar 

  11. Gao, G.; Jiang, Y. W.; Guo, Y.; Jia, H. R.; Cheng, X.; Deng, Y.; Yu, X. W.; Zhu, Y. X.; Guo, H. Y.; Sun, W.; Liu, X.; Zhao, J.; Yang, S.; Yu, Z. W.; Raya, F. M. S.; Liang, G.; Wu, F. G. Enzyme-mediated tumor starvation and phototherapy enhance mild-temperature photothermal therapy. Adv. Funct. Mater. 2020, 30, 1909391.

    Article  CAS  Google Scholar 

  12. Zhao, P.; **, Z.; Chen, Q.; Yang, T.; Chen, D.; Meng, J.; Lu, X.; Gu, Z.; He, Q. Local generation of hydrogen for enhanced photothermal therapy. Nat. Commun. 2018, 9, 4241.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Deng, X.; Guan, W.; Qing, X.; Yang, W.; Que, Y.; Tan, L.; Liang, H.; Zhang, Z.; Wang, B.; Liu, X.; Zhao, Y.; Shao, Z. Ultrafast low-temperature photothermal therapy activates autophagy and recovers immunity for efficient antitumor treatment. ACS Appl. Mater. Interfaces 2020, 12, 4265–4275.

    Article  CAS  PubMed  Google Scholar 

  14. Ali, M. R.; Ali, H. R.; Rankin, C. R.; El-Sayed, M. A. Targeting heat shock protein 70 using gold nanorods enhances cancer cell apoptosis in low dose plasmonic photothermal therapy. Biomaterials 2016, 102, 1–8.

    Article  CAS  PubMed  Google Scholar 

  15. Gao, G.; Jiang, Y. W.; Sun, W.; Guo, Y.; Jia, H. R.; Yu, X. W.; Pan, G. Y.; Wu, F. G. Molecular targeting-mediated mild-temperature photothermal therapy with a smart albumin-based nanodrug. Small 2019, 15, e1900501.

    Article  PubMed  Google Scholar 

  16. Lee, S. W.; Lee, J. W.; Chung, J. H.; Jo, J. K. Expression of heat shock protein 27 in prostate cancer cell lines according to the extent of malignancy and doxazosin treatment. World J. Mens. Health. 2013, 31, 247–53.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Gaikwad, S.; Patel, D.; Agrawal-Rajput, R. CD40 negatively regulates ATP-TLR4-activated inflammasome in microglia. Cell Mol. Neurobiol. 2017, 37, 351–359.

    Article  CAS  PubMed  Google Scholar 

  18. Fu, Z.; Williams, G. R.; Niu, S.; Wu, J.; Gao, F.; Zhang, X.; Yang, Y.; Li, Y.; Zhu, L. M. Functionalized boron nanosheets as an intelligent nanoplatform for synergistic low-temperature photothermal therapy and chemotherapy. Nanoscale 2020, 12, 14739.

    Article  CAS  PubMed  Google Scholar 

  19. Yang, Y.; Zhu, W.; Dong, Z.; Chao, Y.; Xu, L.; Chen, M.; Liu, Z. 1D coordination polymer nanofibers for low-temperature photothermal therapy. Adv. Mater. 2017, 29, 1703588.

    Article  Google Scholar 

  20. Shang, T.; Yu, X.; Han, S.; Yang, B. Nanomedicine-based tumor photothermal therapy synergized immunotherapy. Biomater. Sci. 2020, 8, 5241–5259.

    Article  CAS  PubMed  Google Scholar 

  21. Chen, S.; Lei, Q.; Qiu, W. X.; Liu, L. H.; Zheng, D. W.; Fan, J. X.; Rong, L.; Sun, Y. X.; Zhang, X. Z. Mitochondria-targeting “Nanoheater” for enhanced photothermal/chemo-therapy. Biomaterials 2017, 117, 92–104.

    Article  CAS  PubMed  Google Scholar 

  22. Zhu, X.; Feng, W.; Chang, J.; Tan, Y. W.; Li, J.; Chen, M.; Sun, Y.; Li, F. Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature. Nat. Commun. 2016, 7, 10437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pan, G. Y.; Jia, H. R.; Zhu, Y. X.; Wu, F. G. Turning double hydrophilic into amphiphilic: IR825-conjugated polymeric nanomicelles for near-infrared fluorescence imaging-guided photothermal cancer therapy. Nanoscale 2018, 10, 2115–2127.

    Article  CAS  PubMed  Google Scholar 

  24. Nasseri, B.; Alizadeh, E.; Bani, F.; Davaran, S.; Akbarzadeh, A.; Rabiee, N.; Bahadori, A.; Ziaei, M.; Bagherzadeh, M.; Saeb, M. R.; Mozafari, M.; Hamblin, M. R. Nanomaterials for photothermal and photodynamic cancer therapy. Appl. Phys. Rev. 2022, 9, 011317.

    Article  CAS  Google Scholar 

  25. Guo, Z.; Chen, J.; Lin, L.; Guan, X.; Sun, P.; Chen, M.; Tian, H.; Chen, X. pH triggered size increasing gene carrier for efficient tumor accumulation and excellent antitumor effect. ACS Appl. Mater. Interfaces 2017, 9, 15297–15306.

    Article  CAS  PubMed  Google Scholar 

  26. Hu, J. J.; Liu, M. D.; Gao, F.; Chen, Y.; Peng, S. Y.; Li, Z. H.; Cheng, H.; Zhang, X. Z. Photo-controlled liquid metal nanoparticle-enzyme for starvation/photothermal therapy of tumor by win-win cooperation. Biomaterials 2019, 217, 119303.

    Article  CAS  PubMed  Google Scholar 

  27. Wang, S.; Huang, P.; Chen, X. Hierarchical targeting strategy for enhanced tumor tissue accumulation/retention and cellular internalization. Adv. Mater. 2016, 28, 7340–7364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yang, L.; Tseng, Y. T.; Suo, G.; Chen, L.; Yu, J.; Chiu, W. J.; Huang, C. C.; Lin, C. H. Photothermal therapeutic response of cancer cells to aptamer-gold nanoparticle-hybridized graphene oxide under NIR illumination. ACS Appl. Mater. Interfaces 2015, 7, 5097–5106.

    Article  CAS  PubMed  Google Scholar 

  29. Ye, Y.; He, J.; Qiao, Y.; Qi, Y.; Zhang, H.; Santos, H. A.; Zhong, D.; Li, W.; Hua, S.; Wang, W.; Grzybowski, A.; Yao, K.; Zhou, M. Mild temperature photothermal assisted anti-bacterial and anti-inflammatory nanosystem for synergistic treatment of post-cataract surgery endophthalmitis. Theranostics 2020, 10, 8541–8557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang, K.; Zhang, Z.; Lin, L.; Hao, K.; Chen, J.; Tian, H.; Chen, X. Cyanine-assisted exfoliation of covalent organic frameworks in nanocomposites for highly efficient chemo-photothermal tumor therapy. ACS Appl. Mater. Interfaces 2019, 11, 39503–39512.

    Article  CAS  PubMed  Google Scholar 

  31. Zhang, X.; Si, Z.; Wang, Y.; Li, Y.; Xu, C.; Tian, H. Polymerization and coordination synergistically constructed photothermal agents for macrophages-mediated tumor targeting diagnosis and therapy. Biomaterials 2021, 264, 120382.

    Article  CAS  PubMed  Google Scholar 

  32. Hu, Y.; Lin, L.; Chen, J.; Hao, K.; Zhang, S.; Guo, X.; Guo, Z.; Tian, H.; Chen, X. Highly enhanced antitumor immunity by a three-barreled strategy of the l-arginine-promoted nanovaccine and gene-mediated PD-L1 blockade. ACS Appl. Mater. Interfaces 2020, 12, 41127–41137.

    Article  CAS  PubMed  Google Scholar 

  33. **ong, H.; Wang, Z.; Wang, C.; Yao, J. Transforming complexity to simplicity: protein-like nanotransformer for improving tumor drug delivery programmatically. Nano Lett. 2020, 20, 1781–1790.

    Article  CAS  PubMed  Google Scholar 

  34. Wang, D.; Zhang, Z.; Lin, L.; Liu, F.; Wang, Y.; Guo, Z.; Li, Y.; Tian, H.; Chen, X. Porphyrin-based covalent organic framework nanoparticles for photoacoustic imaging-guided photodynamic and photothermal combination cancer therapy. Biomaterials 2019, 223, 119459.

    Article  CAS  PubMed  Google Scholar 

  35. Zhou, Z.; Yan, Y.; Wang, L.; Zhang, Q.; Cheng, Y. Melanin-like nanoparticles decorated with an autophagy-inducing peptide for efficient targeted photothermal therapy. Biomaterials 2019, 203, 63–72.

    Article  CAS  PubMed  Google Scholar 

  36. Zhang, R.; Nie, T.; Fang, Y.; Huang, H.; Wu, J. Poly(disulfide)s: from synthesis to drug delivery. Biomacromolecules 2022, 23, 1–19.

    Article  PubMed  Google Scholar 

  37. Zhu, Y.; Lin, M.; Hu, W.; Wang, J.; Zhang, Z. G.; Zhang, K.; Yu, B.; Xu, F. J. Controllable disulfide exchange polymerization of polyguanidine for effective biomedical applications by thiol-mediated uptake. Angew. Chem. Int. Ed. 2022, 61, e202200535.

    CAS  Google Scholar 

  38. Espinosa, A.; Curcio, A.; Cabana, S.; Radtke, G.; Bugnet, M.; Kolosnjaj-Tabi, J.; Pechoux, C.; Alvarez-Lorenzo, C.; Botton, G. A.; Silva, A. K. A.; Abou-Hassan, A.; Wilhelm, C. Intracellular biodegradation of ag nanoparticles, storage in ferritin, and protection by a au shell for enhanced photothermal therapy. ACS Nano 2018, 12, 6523–6535.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 52173115, 52073278, 51925305 and 51873208), Jilin province science and technology development program (No. 20200201103JC) and Foundation of Department of Education of Jilin Province of China (No. JJKH20210828KJ).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan-Hui Li or Hua-Yu Tian.

Additional information

Notes

The authors declare no competing financial interest.

Electronic Supplementary Information

10118_2022_2857_MOESM1_ESM.pdf

PLG-g-mPEG Mediated Multifunctional Nanoparticles for Photoacoustic Imaging Guided Combined Chemo/Photothermal Antitumor Therapy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Li, L., Guo, ZP. et al. PLG-g-mPEG Mediated Multifunctional Nanoparticles for Photoacoustic Imaging Guided Combined Chemo/Photothermal Antitumor Therapy. Chin J Polym Sci 41, 538–546 (2023). https://doi.org/10.1007/s10118-022-2857-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-022-2857-3

Keywords

Navigation