Log in

Slow Down Dewetting in Polymer Films by Isocyanate-treated Graphite Oxide

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Isocyanate-treated graphite oxides (iGOs) were well-dispersed into the polystyrene (PS) thin films and formed a novel network structure. With control in fabrication, an iGOs-web layer was horizontally embedded near the surface of the films and thus formed a composite slightly doped by iGOs. This work demonstrated that the iGOs network can remarkably depress the dewetting process in the polymer matrix of the composite, while dewetting often leads to rupture of polymer films and is considered as a major practical limit in using polymeric materials above their glass transition temperatures (Tg). Via annealing the 50–120 nm thick composite and associated neat PS films at temperatures ranging from 35 °C to 70 °C above Tg, surface morphology evolution of the films was monitored by atomic force microscopy (AFM). The iGOs-doped PS exhibited excellent thermal stability, i.e., the number of dewetting holes was greatly reduced and the long-term hole growth was fairly restricted. In contrast, the neat PS film showed serious surface fluctuation and a final rupture induced by ordinary dewetting. The method developed in this work may pave a road to reinforce thin polymer films and enhance their thermal stability, in order to meet requirements by technological advances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Reiter, G. Dewetting of thin polymer films. Phys. Rev. Lett. 1992, 68(1), 75

    Article  CAS  PubMed  Google Scholar 

  2. **e, R.; Karim, A.; Douglas, J. F.; Han, C. C.; Weiss, R. A. Spinodal dewetting of thin polymer films. Phys. Rev. Lett. 1998, 81(6), 1251–1254

    Article  CAS  Google Scholar 

  3. Reiter, G. Unstable thin polymer films: rupture and dewetting processes. Langmuir 1993, 9(5), 1344–1351

    Article  CAS  Google Scholar 

  4. Reiter, G.; Sharma, A.; Casoli, A.; David, M.; Khanna, R.; Auroy, A. Thin film instability induced by long-range forces. Langmuir 1999, 15(7), 2551–2558

    Article  CAS  Google Scholar 

  5. Faldi, A.; Composto, R. J.; Winey, K. I. Unstable polymer bilayers. 1. morphology of dewetting. Langmuir 1995, 11(12), 4855–48б1

    Article  CAS  Google Scholar 

  6. Qi, P.; Winey, K. I.; Hu, H. H.; Composto, R. J. Unstable polymer bilayers. 2. the effect of film thickness. Langmuir 1997, 13(6), 1758–1766

    Article  Google Scholar 

  7. Stange, T. G.; Evans, D. F.; Hendrickson, W. A. Nucleation and growth of defects leading to dewetting of thin polymer films. Langmuir 1997, 13(16), 4459–4465

    Article  CAS  Google Scholar 

  8. David, M. O.; Reiter, G.; Sitthaï T.; Schultz, J. Deformation of a glassy polymer film by long-range intermolecular forces. Langmuir 1998, 14(20), 5667–5672

    Article  CAS  Google Scholar 

  9. Safran, S. A.; Klein, J. Surface instability of viscoelastic thin films. J. Phys. B: At., Mol. Opt. Phys. 1993, 3(5), 749–757

    CAS  Google Scholar 

  10. Wensink, K. D. F.; Jérôme B. Dewetting induced by density fluctuations. Langmuir 2002, 18(2), 413–416

    Article  CAS  Google Scholar 

  11. Reiter, G.; Hamieh, M.; Damman, P.; Sclavons, S., Gabriele, S.; Vilmin, T; Raphael, E. Residual stresses in thin polymer films cause rupture and dominate early stages of dewetting. Nat. Mater. 2005, 4(10), 754

    Article  CAS  PubMed  Google Scholar 

  12. Kim, H. I.; Mate, C. M.; Hannibal, K. A.; Perry, S. S. How disjoining pressure drives the dewetting of a polymer film on a silicon surface. Phys. Rev. Lett. 1999, 82(17), 3496–3499

    Article  CAS  Google Scholar 

  13. Rittigstein, P.; Priestley, R. D.; Broadbelt, L. J.; Torkelson, J. M. Model polymer nanocomposites provide an understanding of confinement effects in real nanocomposites. Nat. Mater. 2007, б(4), 278

    Article  CAS  Google Scholar 

  14. Desai, T.; Keblinski, P.; Kumar, S. K. Molecular dynamics simulations of polymer transport in nanocomposites. J. Chem. Phys. 2005, 122(13), 134910

    Article  CAS  PubMed  Google Scholar 

  15. Alcoutlabi, M.; Mckenna, G. B. Effects of confinement on material behaviour at the nanometre size scale. J. Phys-Condense Mat. 2005, 17(15), R461–R524

    Article  CAS  Google Scholar 

  16. Mackay, M. E.; Tuteja, A.; Duxbury, P. M.; Hawker, C. J.; Horn, B. V.; Guan, Z.; Chen, G.; Krishnan, R. S. General strategies for nanoparticle dispersion. Science 2006, 311(5768), 1740

    Article  CAS  PubMed  Google Scholar 

  17. Balazs, A. C.; Emrick, T.; Russell, T. P. Nanoparticle polymer composites: where two small worlds meet. Science 2006, 314(5802), 1107–1110

    Article  CAS  PubMed  Google Scholar 

  18. Ohno, K.; Morinaga, T.; Takeno, S.; Yoshinobu Tsujii, A.; Fukuda, T. Suspensions of silica particles grafted with concentrated polymer brush: effects of graft chain length on brush layer thickness and colloidal crystallization. Macromolecules 2007, 40(25), 9143–9150

    Article  CAS  Google Scholar 

  19. Wong, H. C.; Cabral, J. T. Spinodal clustering in thin films of nanoparticle-polymer mixtures. Phys. Rev. Lett. 2010, 105(3), 038301

    Article  CAS  PubMed  Google Scholar 

  20. Barnes, K. A.; Karim, A.; Douglas, J. F.; Nakatani, A. I.; Gruell, H.; Amis, E. J. Suppression of dewetting in nanoparticle-filled polymer films. Macromolecules 2000, 33(11), 4177–4185

    Article  CAS  Google Scholar 

  21. Bandyopadhyay, D.; Douglas, J. F.; Karim, A. Influence of C60 nanoparticles on the stability and morphology of miscible polymer blend films. Macromolecules 2011, 20(20), 8136–8142

    Article  CAS  Google Scholar 

  22. Wong, H. C.; Cabral, J. T. Spinodal clustering in thin films of nanoparticle-polymer mixtures. Phys. Rev. Lett. 2010, 105(3), 038301

    Article  CAS  PubMed  Google Scholar 

  23. Liu, T. X.; Phang, I. Y.; Lu, S.; And, S. Y. C.; Zhang, W. D. Morphology and mechanical properties of multiwalled carbon nanotubes reinforced nylon-6 composites. Macromolecules 2004, 37(19), 7214–7222

    Article  CAS  Google Scholar 

  24. Kim, B.; Lee, J.; Yu, I. Electrical properties of single-wall carbon nanotube and epoxy composites. J. Appl. Phys. 2003, 94(10), 6724–6728

    Article  CAS  Google Scholar 

  25. Che, J. Stability of polymer grafted nanoparticle monolayers: impact of architecture and polymerubstrate interactions on dewetting. ACS Macro Lett. 2016, 5(12), 1369–1374

    Article  CAS  Google Scholar 

  26. Che, J.; Park, K.; Grabowski, C. A.; Jawaid, A.; Kelley, J.; Koerner, H.; Vaia, R. A. Preparation of ordered monolayers of polymer grafted nanoparticles: impact of architecture, concentration, and substrate surface energy. Macromolecules 2016, 49(5), 1834–1847

    Article  CAS  Google Scholar 

  27. Ramanathan, T.; Abdala, A. A.; Stankovich, S.; Dikin, D. A.; Herrera-Alonso, M.; Piner, R. D.; Adamson, D. H.; Schniepp, H. C.; Chen, X.; Ruoff, R. S.; Nguyen, S. T.; Aksay, I. A.; Prud’Homme, R. K.; Brinson, L. C. Functionalized graphene sheets for polymer nanocomposites. Nat. Nanotechnol. 2008, 3(6), 327–331

    Article  CAS  PubMed  Google Scholar 

  28. Potts, J. R.; Dreyer, D. R.; Bielawski, C. W.; Ruoff, R. S. Graphene-based polymer nanocomposites. Polymer 2011, 52(1), 5–25

    Article  CAS  Google Scholar 

  29. Cao, P.; Bai, P.; Omrani, A. A.; **. Adv. Mater. 2017, 29(36), 1701536

    Article  CAS  Google Scholar 

  30. Stankovich, S.; Piner, R. D.; Nguyen, S. B. T.; Ruoff, R. S. Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon 2006, 44(15), 3342–3347

    Article  CAS  Google Scholar 

  31. Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Graphene-based composite materials. Nature 2006, 442(7100), 282–286

    Article  CAS  PubMed  Google Scholar 

  32. Chai, Y.; Salez, T.; Mcgraw, J. D.; Benzaquen, M.; Dalnoki-Veress, K.; Raphael, E.; Forrest, J. A. A direct quantitative measure of surface mobility in a glassy polymer. Science 2014, 343(6174), 994

    Article  CAS  PubMed  Google Scholar 

  33. Zhu, Y.; Yang, Q.; You, J.; Li, Y. Composition fluctuation intensity effect on the stability of polymer films. RSC Adv. 2016, 6(74), 69715–69719

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the start-up fund of Y.G. from both University of Michigan-Shanghai Jiao Tong University Joint Institute, and School of Materials Science and Engineering at SJTU. The authors also acknowledge the National Science Foundation of China for financial support through the General Program (No. 2157408) and the foundation of Shanghai Sailing Plan (No, 16YF1406100). Y.G. is very grateful to the National Youth 1000 Talent Program of China, the Shanghai 1000 Talent Plan, and the support by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun-Long Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Bai, P., Huo, M. et al. Slow Down Dewetting in Polymer Films by Isocyanate-treated Graphite Oxide. Chin J Polym Sci 36, 1070–1076 (2018). https://doi.org/10.1007/s10118-018-2147-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-018-2147-2

Keywords

Navigation