Log in

Complexity guarantees for an implicit smoothing-enabled method for stochastic MPECs

  • Full Length Paper
  • Series B
  • Published:
Mathematical Programming Submit manuscript

Abstract

Mathematical programs with equilibrium constraints (MPECs) represent a class of hierarchical programs that allow for modeling problems in engineering, economics, finance, and statistics. While stochastic generalizations have been assuming increasing relevance, there is a pronounced absence of efficient first/zeroth-order schemes with non-asymptotic rate guarantees for resolving even deterministic variants of such problems. We consider a subclass of stochastic MPECs (SMPECs) where the parametrized lower-level equilibrium problem is given by a deterministic/stochastic variational inequality problem whose map** is strongly monotone, uniformly in upper-level decisions. Under suitable assumptions, this paves the way for resolving the implicit problem with a Lipschitz continuous objective via a gradient-free zeroth-order method by leveraging a locally randomized spherical smoothing framework. Efficient algorithms for resolving the implicit problem allow for leveraging any convexity property possessed by the implicit problem, which in turn facilitates the computation of approximate global minimizers. In this setting, we present schemes for single-stage and two-stage stochastic MPECs when the upper-level problem is either convex or nonconvex in an implicit sense. (I). Single-stage SMPECs. In single-stage SMPECs, in convex regimes, our proposed inexact schemes are characterized by a complexity in upper-level projections, upper-level samples, and lower-level projections of \({\mathcal {O}}(\tfrac{1}{\epsilon ^2})\), \({\mathcal {O}}(\tfrac{1}{\epsilon ^2})\), and \({\mathcal {O}}(\tfrac{1}{\epsilon ^2}\ln (\tfrac{1}{\epsilon }))\), respectively. Analogous bounds for the nonconvex regime are \({\mathcal {O}}(\tfrac{1}{\epsilon })\), \({\mathcal {O}}(\tfrac{1}{\epsilon ^2})\), and \({\mathcal {O}}(\tfrac{1}{\epsilon ^3})\), respectively. (II). Two-stage SMPECs. In two-stage SMPECs, in convex regimes, our proposed inexact schemes have a complexity in upper-level projections, upper-level samples, and lower-level projections of \({\mathcal {O}}(\tfrac{1}{\epsilon ^2})\), \({\mathcal {O}}(\tfrac{1}{\epsilon ^2})\), and \({\mathcal {O}}(\tfrac{1}{\epsilon ^2}\ln (\tfrac{1}{\epsilon }))\) while the corresponding bounds in the nonconvex regime are \({\mathcal {O}}(\tfrac{1}{\epsilon })\), \({\mathcal {O}}(\tfrac{1}{\epsilon ^2})\), and \({\mathcal {O}}(\tfrac{1}{\epsilon ^2}\ln (\tfrac{1}{\epsilon }))\), respectively. In addition, we derive statements for accelerated schemes in settings where the exact solution of the lower-level problem is available. Preliminary numerics suggest that the schemes scale with problem size, are relatively robust to modification of algorithm parameters, show distinct benefits in obtaining near-global minimizers for convex implicit problems in contrast with competing solvers, and provide solutions of similar accuracy in a fraction of the time taken by sample-average approximation (SAA).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. In some of the literature on stochastic programming, this class of problems is also known as one-stage SMPEC. However, inspired by this paper [68] and for expository reasons, we have adopted the term single-stage SMPEC.

  2. We note that while spherical smoothing has apparently been studied in [56], we did not have access to this text. Part (i) of our lemma is inspired by Flaxman et al. [24] while other parts either follow in a fashion similar to Gaussian smoothing [59] or are directly proven.

References

  1. Agdeppa, R.P., Yamashita, N., Fukushima, M.: An implicit programming approach for the road pricing problem with nonadditive route costs. J. Ind. Manag. Optim. 4, 183–197 (2008)

    MathSciNet  MATH  Google Scholar 

  2. Anitescu, M.: On solving mathematical programs with complementarity constraints as nonlinear programs. SIAM J. Optim. 15(4), 1203–1236 (2005)

    MathSciNet  MATH  Google Scholar 

  3. Bard, J.F.: Convex two-level optimization. Math. Program. 40, 15–27 (1988)

    MathSciNet  MATH  Google Scholar 

  4. Baringo, L., Conejo, A.J.: Strategic offering for a wind power producer. IEEE Trans. Power Syst. 28, 4645–4654 (2013)

    Google Scholar 

  5. Beck, A.: Introduction to nonlinear optimization, vol. 19 of MOS-SIAM Series on Optimization, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA; Mathematical Optimization Society, Philadelphia, PA (2014). Theory, algorithms, and applications with MATLAB

  6. Beck, A.: First-Order Methods in Optimization. SIAM, Philadelphia (2017)

    MATH  Google Scholar 

  7. Beremlijski, P., Haslinger, J., Kočvara, M., Outrata, J.: Shape optimization in contact problems with Coulomb friction. SIAM J. Optim. 13, 561–587 (2002)

    MathSciNet  MATH  Google Scholar 

  8. Burke, J.V., Lewis, A.S., Overton, M.L.: A robust gradient sampling algorithm for nonsmooth, nonconvex optimization. SIAM J. Optim. 15, 751–779 (2005)

    MathSciNet  MATH  Google Scholar 

  9. Chen, X.: Smoothing methods for nonsmooth, nonconvex minimization. Math. Program. 134, 71–99 (2012)

    MathSciNet  MATH  Google Scholar 

  10. Chen, X., Sun, H., Wets, R.J.-B.: Regularized mathematical programs with stochastic equilibrium constraints: estimating structural demand models. SIAM J. Optim. 25, 53–75 (2015)

    MathSciNet  MATH  Google Scholar 

  11. Clarke, F.H., Ledyaev, Y.S., Stern, R.J., Wolenski, P.R.: Nonsmooth analysis and control theory. In: Graduate Texts in Mathematics, vol. 178. Springer, New York (1998)

  12. Conn, A.R., Scheinberg, K., Vicente, L.N.: Introduction to Derivative-Free Optimization. SIAM, Philadelphia (2009)

    MATH  Google Scholar 

  13. Cui, S., Shanbhag, U.V.: On the analysis of variance-reduced and randomized projection variants of single projection schemes for monotone stochastic variational inequality problems. Set-Valued Var. Anal. 29, 453–499 (2021)

    MathSciNet  MATH  Google Scholar 

  14. Czyzyk, J., Mesnier, M.P., Moré, J.J.: The NEOS server. IEEE J. Comput. Sci. Eng. 5, 68–75 (1998)

    Google Scholar 

  15. DeMiguel, V., Friedlander, M.P., Nogales, F.J., Scholtes, S.: A two-sided relaxation scheme for mathematical programs with equilibrium constraints. SIAM J. Optim. 16, 587–609 (2005)

    MathSciNet  MATH  Google Scholar 

  16. DeMiguel, V., Xu, H.: A stochastic multiple-leader Stackelberg model: analysis, computation, and application. Oper. Res. 57, 1220–1235 (2009)

    MathSciNet  MATH  Google Scholar 

  17. Dolan, E.D.: The NEOS Server 4.0 Administrative Guide. Technical Memorandum ANL/MCS-TM-250, Mathematics and Computer Science Division, Argonne National Laboratory (2001)

  18. Duchi, J.C., Bartlett, P.L., Wainwright, M.J.: Randomized smoothing for stochastic optimization. SIAM J. Optim. (SIOPT) 22, 674–701 (2012)

    MathSciNet  MATH  Google Scholar 

  19. Evgrafov, A., Patriksson, M.: Stochastic structural topology optimization: discretization and penalty function approach. Struct. Multidiscip. Optim. 25, 174–188 (2003)

    MathSciNet  MATH  Google Scholar 

  20. Facchinei, F., Jiang, H., Qi, L.: A smoothing method for mathematical programs with equilibrium constraints. Math. Program. 85, 107–134 (1999)

    MathSciNet  MATH  Google Scholar 

  21. Facchinei, F., Pang, J.-S.: Finite-dimensional variational inequalities and complementarity problems. In: Springer Series in Operations Research, vol. I. Springer, New York, II (2003)

  22. Fang, X., Hu, Q., Li, F., Wang, B., Li, Y.: Coupon-based demand response considering wind power uncertainty: a strategic bidding model for load serving entities. IEEE Trans. Power Syst. 31, 1025–1037 (2015)

    Google Scholar 

  23. Dirkse, S. P., Ferris, M. C., Meeraus, A.: Mathematical programs with equilibrium constraints: automatic reformulation and solution via constraint optimization. Technical Report NA-02/11, Oxford University Computing Laboratory (2002)

  24. Flaxman, A., Kalai, A. T., McMahan, B.: Online convex optimization in the bandit setting: Gradient descent without a gradient. In: SODA ’05 Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 385–394 (January 2005)

  25. Fletcher, R., Leyffer, S., Ralph, D., Scholtes, S.: Local convergence of SQP methods for mathematical programs with equilibrium constraints. SIAM J. Optim. 17, 259–286 (2006)

    MathSciNet  MATH  Google Scholar 

  26. Ghadimi, S., Lan, G.: Stochastic first- and zeroth-order methods for nonconvex stochastic programming. SIAM J. Optim. 23, 2341–2368 (2013)

    MathSciNet  MATH  Google Scholar 

  27. Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Math. Program. 155, 267–305 (2016)

    MathSciNet  MATH  Google Scholar 

  28. Goldstein, A.A.: Optimization of Lipschitz continuous functions. Math. Program. 13, 14–22 (1977)

    MathSciNet  MATH  Google Scholar 

  29. Gropp, W., Moré, J.J.: Optimization environments and the NEOS server. In: Buhman, M.D., Iserles, A. (eds.) Approximation Theory and Optimization, p. 167. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  30. Hintermüller, M., Surowiec, T.: A bundle-free implicit programming approach for a class of elliptic MPECs in function space. Math. Program. 160, 271–305 (2016)

    MathSciNet  MATH  Google Scholar 

  31. Hobbs, B.F., Metzler, C.B., Pang, J.-S.: Strategic gaming analysis for electric power systems: an MPEC approach. IEEE Trans. Power Syst. 15, 638–645 (2000)

    Google Scholar 

  32. Hu, X., Ralph, D.: Convergence of a penalty method for mathematical programming with complementarity constraints. J. Optim. Theory Appl. 123, 365–398 (2004)

    MathSciNet  Google Scholar 

  33. Iusem, A.N., Jofré, A., Oliveira, R.I., Thompson, P.: Variance-based extragradient methods with line search for stochastic variational inequalities. SIAM J. Optim. 29, 175–206 (2019)

    MathSciNet  MATH  Google Scholar 

  34. Jalilzadeh, A., Shanbhag, U.V.: A proximal-point algorithm with variable sample-sizes (PPAWSS) for monotone stochastic variational inequality problems. In: Winter Simulation Conference, WSC 2019, National Harbor, MD, USA, December 8–11, 2019, vol. 2019, pp. 3551–3562. IEEE (2019)

  35. Jalilzadeh, A., Shanbhag, U. V., Blanchet, J. H., Glynn, P. W.: Smoothed variable sample-size accelerated proximal methods for nonsmooth stochastic convex programs. ar**v:1803.00718 (2018)

  36. Jiang, H., Ralph, D.: Smooth SQP methods for mathematical programs with nonlinear complementarity constraints. SIAM J. Optim. 10(3), 779–808 (2000)

    MathSciNet  MATH  Google Scholar 

  37. Jiang, H., Xu, H.: Stochastic approximation approaches to the stochastic variational inequality problem. IEEE Trans. Autom. Control 53, 1462–1475 (2008)

    MathSciNet  MATH  Google Scholar 

  38. Juditsky, A., Nemirovski, A., Tauvel, C.: Solving variational inequalities with stochastic mirror-prox algorithm. Stoch. Syst. 1, 17–58 (2011)

    MathSciNet  MATH  Google Scholar 

  39. Kanno, Y.: An implicit formulation of mathematical program with complementarity constraints for application to robust structural optimization. J. Oper. Res. Soc. Jpn. 54, 65–85 (2011)

    MathSciNet  MATH  Google Scholar 

  40. Kaushik, H. D., Yousefian, F.: A method with convergence rates for optimization problems with variational inequality constraints. ar**v:2007.15845v2 (2021)

  41. Knopp, K.: Theory and Applications of Infinite Series. Blackie & Son Ltd, Bishopbriggs (1951)

    MATH  Google Scholar 

  42. Kočvara, M., Outrata, J.V.: Optimization problems with equilibrium constraints and their numerical solution. Math. Program. 101, 119–149 (2004)

    MathSciNet  MATH  Google Scholar 

  43. Kočvara, M., Outrata, J.V.: Inverse truss design as a conic mathematical program with equilibrium constraints. Discrete Contin. Dyn. Syst. Ser. S 10, 1329–1350 (2017)

    MathSciNet  MATH  Google Scholar 

  44. Lakshmanan, H., Farias, D.: Decentralized recourse allocation in dynamic networks of agents. SIAM J. Optim. 19, 911–940 (2008)

    MathSciNet  MATH  Google Scholar 

  45. Lawphongpanich, S., Hearn, D.W.: An MPEC approach to second-best toll pricing. Math. Program. 101, 33–55 (2004)

    MathSciNet  MATH  Google Scholar 

  46. Leyffer, S., López-Calva, G., Nocedal, J.: Interior methods for mathematical programs with complementarity constraints. SIAM J. Optim. 17, 52–77 (2006)

    MathSciNet  MATH  Google Scholar 

  47. Lin, G.-H., Chen, X., Fukushima, M.: Solving stochastic mathematical programs with equilibrium constraints via approximation and smoothing implicit programming with penalization. Math. Program. 116, 343–368 (2009)

    MathSciNet  MATH  Google Scholar 

  48. Liu, T., Pong, T.K., Takeda, A.: A successive difference-of-convex approximation method for a class of nonconvex nonsmooth optimization problems. Math. Program. 176, 339–367 (2019)

    MathSciNet  MATH  Google Scholar 

  49. Liu, Y., Lin, G.-H.: Convergence analysis of a regularized sample average approximation method for stochastic mathematical programs with complementarity constraints. Asia-Pac. J. Oper. Res. 28, 755–771 (2011)

    MathSciNet  MATH  Google Scholar 

  50. Luo, Z.-Q., Pang, J.-S., Ralph, D.: Mathematical Programs with Equilibrium Constraints. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

  51. Mayne, D.Q., Polak, E.: Nondifferential optimization via adaptive smoothing. J. Optim. Theory Appl. 43, 601–613 (1984)

    MathSciNet  MATH  Google Scholar 

  52. Migdalas, A., Pardalos, P.M., Värbrand, P.: Multilevel Optimization: Algorithms and Applications, vol. 20. Springer, Berlin (1998)

    MATH  Google Scholar 

  53. Mordukhovich, B.S.: Characterizations of linear suboptimality for mathematical programs with equilibrium constraints. Math. Program. 120, 261–283 (2009)

    MathSciNet  MATH  Google Scholar 

  54. Murphy, F.H., Sherali, H.D., Soyster, A.L.: A mathematical programming approach for determining oligopolistic market equilibrium. Math. Program. 24, 92–106 (1982)

    MathSciNet  MATH  Google Scholar 

  55. Nemirovski, A., Juditsky, A., Lan, G., Shapiro, A.: Robust stochastic approximation approach to stochastic programming. SIAM J. Optim. 19, 1574–1609 (2009)

    MathSciNet  MATH  Google Scholar 

  56. Nemirovsky, A. S., Yudin, D. B.: Problem complexity and method efficiency in optimization, Wiley-Interscience Series in Discrete Mathematics, John Wiley & Sons, New York (1983)

  57. Nesterov, Y.: A method for unconstrained convex minimization problem with the rate of convergence \({{O}(1/k^2)}\). Doklady AN USSR 269, 543–547 (1983)

    Google Scholar 

  58. Nesterov, Y.: Introductory Lectures on Convex Programming Volume I: Basic Course, Lecture Notes (1998)

  59. Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Found. Comput. Math. 17, 527–566 (2017)

    MathSciNet  MATH  Google Scholar 

  60. Outrata, J., Kočvara, M., Zowe, J.: Nonsmooth Approach to Optimization Problems with Equilibrium Constraints, vol. 28 of Nonconvex Optimization and its Applications. Kluwer Academic Publishers, Dordrecht (1998). Theory, Applications and Numerical Results

  61. Outrata, J., Zowe, J.: A numerical approach to optimization problems with variational inequality constraints. Math. Program. 68, 105–130 (1995)

    MathSciNet  MATH  Google Scholar 

  62. Outrata, J.V.: On optimization problems with variational inequality constraints. SIAM J. Optim. 4, 340–357 (1994)

    MathSciNet  MATH  Google Scholar 

  63. Patriksson, M.: On the applicability and solution of bilevel optimization models in transportation science: a study on the existence, stability and computation of optimal solutions to stochastic mathematical programs with equilibrium constraints. Transp. Res. Part B Methodol. 42, 843–860 (2008)

    Google Scholar 

  64. Patriksson, M., Wynter, L.: Stochastic mathematical programs with equilibrium constraints. Oper. Res. Lett. 25, 159–167 (1999)

    MathSciNet  MATH  Google Scholar 

  65. Polyak, B.T.: Introduction to Optimization. Optimization Software Inc, New York (1987)

    MATH  Google Scholar 

  66. Raghunathan, A.U., Biegler, L.T.: An interior point method for mathematical programs with complementarity constraints (MPCCs). SIAM J. Optim. 15, 720–750 (2005). (electronic)

    MathSciNet  MATH  Google Scholar 

  67. Robbins, H., Monro, S.: A stochastic approximation method. Ann. Math. Stat. 22, 400–407 (1951)

    MathSciNet  MATH  Google Scholar 

  68. Rockafellar, R.T., Wets, R.J.-B.: Stochastic variational inequalities: single-stage to multistage. Math. Program. 165, 331–360 (2017)

    MathSciNet  MATH  Google Scholar 

  69. Sahinidis, N. V.: BARON 21.1.13: Global Optimization of Mixed-Integer Nonlinear Programs, User’s Manual (2017)

  70. Scheel, H., Scholtes, S.: Mathematical programs with complementarity constraints: stationarity, optimality, and sensitivity. Math. Oper. Res. 25, 1–22 (2000)

    MathSciNet  MATH  Google Scholar 

  71. Shapiro, A.: Stochastic programming with equilibrium constraints. J. Optim. Theory Appl. 128, 223–243 (2006)

    MathSciNet  MATH  Google Scholar 

  72. Shapiro, A., Xu, H.: Stochastic mathematical programs with equilibrium constraints, modelling and sample average approximation. Optimization 57, 395–418 (2008)

    MathSciNet  MATH  Google Scholar 

  73. Sherali, H.D.: A multiple leader Stackelberg model and analysis. Oper. Res. 32, 390–404 (1984)

    MathSciNet  MATH  Google Scholar 

  74. Sherali, H.D., Soyster, A.L., Murphy, F.H.: Stackelberg–Nash–Cournot equilibria: characterizations and computations. Oper. Res. 31, 253–276 (1983)

    MathSciNet  MATH  Google Scholar 

  75. Steklov, V.A.: Sur les expressions asymptotiques decertaines fonctions définies par les équations différentielles du second ordre et leers applications au problème du dévelopement d’une fonction arbitraire en séries procédant suivant les diverses fonctions. Comm. Charkov Math. Soc. 2, 97–199 (1907)

    Google Scholar 

  76. Su, C.-L.: Analysis on the forward market equilibrium model. Oper. Res. Lett. 35, 74–82 (2007)

    MathSciNet  MATH  Google Scholar 

  77. Tawarmalani, M., Sahinidis, N.V.: A polyhedral branch-and-cut approach to global optimization. Math. Program. 103, 225–249 (2005)

    MathSciNet  MATH  Google Scholar 

  78. Xu, H.: An implicit programming approach for a class of stochastic mathematical programs with complementarity constraints. SIAM J. Optim. 16, 670–696 (2006)

    MathSciNet  MATH  Google Scholar 

  79. Xu, H., Ye, J.: Approximating stationary points of stochastic mathematical programs with equilibrium constraints via sample averaging. Set-Valued Var. Anal. 128, 283–309 (2011)

    MathSciNet  MATH  Google Scholar 

  80. Xu, Y., Qi, Q., Lin, Q., **, R., Yang, T.: Stochastic optimization for dc functions and non-smooth non-convex regularizers with non-asymptotic convergence. In: International Conference on Machine Learning, PMLR, pp. 6942–6951 (2019)

  81. Yousefian, F., Nedić, A., Shanbhag, U.V.: On stochastic gradient and subgradient methods with adaptive steplength sequences. Automatica 48, 56–67 (2012)

    MathSciNet  MATH  Google Scholar 

  82. Yousefian, F., Nedic, A., Shanbhag, U.V.: On smoothing, regularization, and averaging in stochastic approximation methods for stochastic variational inequality problems. Math. Program. 165, 391–431 (2017)

    MathSciNet  MATH  Google Scholar 

  83. Yousefian, F., Nedić, A., Shanbhag, U. V.: Convex nondifferentiable stochastic optimization: a local randomized smoothing technique. In: Proceedings of the 2010 American Control Conference, pp. 4875–4880 (2010)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farzad Yousefian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

U. V. Shanbhag: Shanbhag gratefully acknowledges the support from NSF CMMI-1538605, DOE ARPA-E award DE-AR0001076, and ONR grant N00014-22-1-2589.

F. Yousefian: Yousefian gratefully acknowledges the support from NSF CAREER grant ECCS-1944500 and ONR grant N00014-22-1-2757.

Appendix

Appendix

Lemma 13

(cf. Lemma 10 in [82] and Lemma 2.14 in [40]) Let \(\ell \) and N be arbitrary integers where \(0\le \ell \le N-1\). The following hold.

  1. (a)

    \(\ln \left( \frac{N+1}{\ell +1}\right) \le \sum _{k=\ell }^{N-1}\frac{1}{k+1} \le \frac{1}{\ell +1}+\ln \left( \frac{N}{\ell +1}\right) \).

  2. (b)

    If \(0\le \alpha <1\), then for any \(N \ge 2^{\frac{1}{1-\alpha }}-1\), we have \(\frac{(N+1)^{1-\alpha }}{2(1-\alpha )} \le \sum _{k=0}^{N}\frac{1}{(k+1)^\alpha }\le \frac{(N+1)^{1-\alpha }}{1-\alpha }\).

Lemma 14

(Theorem 6, p. 75 in [41]) Let \(\{u_t\}\subset {\mathbb {R}}^n\) denote a sequence of vectors where \(\lim _{t \rightarrow \infty }u_t=\hat{u}\). Also, let \(\{\alpha _k\}\) denote a sequence of strictly positive scalars such that \(\sum _{k=0}^{\infty } \alpha _k = \infty \). Suppose \(v_k\in {\mathbb {R}}^n\) is defined by \( v_k \triangleq \frac{\sum _{t=0}^{k}\alpha _t u_t}{\sum _{t=0}^{k}\alpha _t}\) for all \(k\ge 0\). Then, \(\lim _{k\rightarrow \infty }v_k = \hat{u}\).

Lemma 15

(cf. [65]) Let \(v_k,\) \(u_k,\) \(\alpha _k,\) and \(\beta _k\) be nonnegative random variables, and let the following relations hold almost surely:

$$\begin{aligned}&{\mathsf {E}}\!\left[ v_{k+1}\mid {{\tilde{{\mathcal {F}}}}_k}\right] \le (1+\alpha _k)v_k - u_k + \beta _k \quad \hbox {for all} k, \quad \sum _{k=0}^\infty \alpha _k< \infty ,\quad \sum _{k=0}^\infty \beta _k < \infty , \end{aligned}$$

where \({\tilde{{\mathcal {F}}}}_k\) denotes the collection \(v_0,\ldots ,v_k\), \(u_0,\ldots ,u_k\), \(\alpha _0,\ldots ,\alpha _k\), \(\beta _0,\ldots ,\beta _k\). Then, we have almost surely \(\lim _{k\rightarrow \infty }v_k = v\) and \(\sum _{k=0}^\infty u_k < \infty ,\) where \(v \ge 0\) is some random variable.

Proof of Lemma 8

We use induction on k for \(k\ge 0\). We have \(e_0 =\tfrac{\Gamma e_0}{0+\Gamma } \le \tfrac{\max \left\{ \tfrac{\beta \gamma ^2}{\alpha \gamma -1},\Gamma e_0\right\} }{0+\Gamma }\) implying that the hypothesis statement holds for \(k=0\). Let us assume that \(e_k \le \tfrac{\theta _0}{k+\Gamma }\) for some \(k\ge 0\) where \(\theta _0 \triangleq \max \left\{ \tfrac{\beta \gamma ^2}{\alpha \gamma -1},\Gamma e_0\right\} \). Let the induction hypothesis hold for \(k\ge 0\). We show that it holds for \(k+1\) as well. We have

$$\begin{aligned}&\theta _0 \ge \tfrac{\beta \gamma ^2}{\alpha \gamma -1} \Rightarrow \theta _0 \le \gamma (\theta _0 \alpha - \beta \gamma ) \Rightarrow \tfrac{\theta _0}{k+\Gamma } \le \tfrac{\gamma (\theta _0 \alpha - \beta \gamma )}{k+\Gamma } \Rightarrow \tfrac{\theta _0}{k+\Gamma +1} \le \tfrac{\gamma (\theta _0 \alpha - \beta \gamma )}{k+\Gamma }\\&\quad \Rightarrow \tfrac{\theta _0}{(k+\Gamma +1)(k+\Gamma )} \le \tfrac{\gamma (\theta _0 \alpha - \beta \gamma )}{(k+\Gamma )^2} \Rightarrow \theta _0\left( \tfrac{1}{k+\Gamma }-\tfrac{1}{k+\Gamma +1}\right) \\&\quad \le \tfrac{\gamma (\theta _0 \alpha - \beta \gamma )}{(k+\Gamma )^2} \Rightarrow \tfrac{\theta _0}{k+\Gamma }- \tfrac{\gamma (\theta _0 \alpha - \beta \gamma )}{(k+\Gamma )^2} \le \tfrac{\theta _0}{k+\Gamma +1}\\&\quad \Rightarrow \left( 1-\alpha \tfrac{\gamma }{k+\Gamma }\right) \tfrac{\theta _0}{k+\Gamma }+ \tfrac{\beta \gamma ^2}{(k+\Gamma )^2} \le \tfrac{\theta _0}{k+\Gamma +1} \Rightarrow \left( 1-\alpha \gamma _k\right) \tfrac{\theta _0}{k+\Gamma }+ \beta \gamma _k^2 \le \tfrac{\theta _0}{k+\Gamma +1}\\&\quad \Rightarrow \left( 1-\alpha \gamma _k\right) e_k+ \beta \gamma _k^2 \le \tfrac{\theta _0}{k+\Gamma +1} \Rightarrow e_{k+1} \le \tfrac{\theta _0}{k+\Gamma +1}. \end{aligned}$$

\(\square \)

1.1 Academic examples and their stochastic counterparts in Sect. 5.4

  • Problem 1. This problem is described in [61, Definition 4.1]

    $$\begin{aligned} f({{\mathbf {x}}},{{\mathbf {y}}})=r_1(x)-xp(x+y_1+y_2+y_3+y_4), \end{aligned}$$

    where \(r_i(v)=c_iv+\tfrac{\beta _i}{\beta _i+1}K_i^{1/\beta _i}v^{(1+\beta _i)/\beta _i}\), \(p(Q)=5000^{1/\gamma }Q^{-1/\gamma }\), \(c_i\), \(\beta _i\), \(K_i\), \(i=1,\ldots ,5\) are given positive parameters in Table 12, \(\gamma \) is a positive parameter, \(Q=x+y_1+y_2+y_3+y_4\).

    $$\begin{aligned} {\mathcal {X}}= & {} \{0\le x \le L\}. \\ F({{\mathbf {x}}},{{\mathbf {y}}})= & {} \left( \begin{aligned} \nabla r_2(y_1)-p(&Q)-y_1\nabla p(Q) \\&\vdots \\ \nabla r_5(y_4)-p(&Q)-y_4\nabla p(Q) \end{aligned} \right) . \\ {\mathcal {Y}}= & {} \{0\le y_j \le L, \quad j=1,2,3,4\}. \end{aligned}$$

    The following three examples were tested in [20, 61].

  • Problem 2.

    $$\begin{aligned} f({{\mathbf {x}}},{{\mathbf {y}}})= & {} x_1^2-2x_1+x_2^2-2x_2+y_1^2+y_2^2. \\ {\mathcal {X}}= & {} \{0\le x_i \le 2, \quad i=1,2\}. \\ F({{\mathbf {x}}},{{\mathbf {y}}})= & {} \left( \begin{aligned} 2y_1-2x_1 \\ 2y_2-2x_2 \end{aligned} \right) . \\ {\mathcal {Y}}= & {} \{(y_j-1)^2 \le 0.25, \quad j=1,2\}. \end{aligned}$$
  • Problem 3.

    $$\begin{aligned} f({{\mathbf {x}}},{{\mathbf {y}}})= & {} 2x_1+2x_2-3y_1-3y_2-60+R[\max \{0,x_1+x_2+y_1-2y_2-40\}]^2. \\ {\mathcal {X}}= & {} \{0\le x_i \le 50, \quad i=1,2\}. \\ F({{\mathbf {x}}},{{\mathbf {y}}})= & {} \left( \begin{aligned} 2y_1-2x_1+40 \\ 2y_2-2x_2+40 \end{aligned} \right) . \\ {\mathcal {Y}}= & {} \{-10\le y_j \le 20, \ x_j-2y_j-10 \ge 0, \quad j=1,2\}. \end{aligned}$$
  • Problem 4.

    $$\begin{aligned} f({{\mathbf {x}}},{{\mathbf {y}}})= & {} \tfrac{1}{2}((x_1-y_1)^2+(x_2-y_2)^2). \\ {\mathcal {X}}= & {} \{0\le x_i \le 10, \quad i=1,2\}. \\ F({{\mathbf {x}}},{{\mathbf {y}}})= & {} \left( \begin{aligned} -34&+2y_1+\tfrac{8}{3}y_2 \\ -24.25&+1.25y_1+2y_2 \end{aligned} \right) . \\ {\mathcal {Y}}= & {} \{-x_{3-j}-y_j+15 \ge 0, \quad j=1,2\}. \end{aligned}$$

    The next problem is taken from [20, 62]. In all tests, the only difference lies in the objective function.

  • Problem 5.

    $$\begin{aligned} {\mathcal {X}}= & {} \{0\le x \le 10\}. \\ F({{\mathbf {x}}},{{\mathbf {y}}})= & {} \left( \begin{aligned} (1+0.2x)y_1-(3+1.333x)-0.333y_3+2y_1y_4-y_5 \\ (1+0.1x)y_2-x+y_3+2y_2y_4-y_6 \\ 0.333y_1-y_2+1-0.1x \\ 9+0.1x-y_1^2-y_2^2 \\ y_1 \\ y_2 \end{aligned} \right) . \\ {\mathcal {Y}}= & {} \{y_j \ge 0, \quad j=3,4,5,6\}. \end{aligned}$$
  • High-dimensional stochastic counterparts. Consider the stochastic N-dimensional counterpart of Problem 1, defined as follows.

    $$\begin{aligned} f({{\mathbf {x}}},{{\mathbf {y}}})={\mathbb {E}}\left[ r_1(x)-xp\left( x+\sum _{i=1}^n y_i,\omega \right) \right] , \end{aligned}$$

    where \(r_i(v)=c_iv+\tfrac{\beta _i}{\beta _i+1}K_i^{1/\beta _i}v^{(1+\beta _i)/\beta _i}\), \(p(Q,\omega )=5000^{1/\gamma (\omega )}Q^{-1/\gamma (\omega )}\), \(c_i = 6\), \(\beta _i=1\), \(K_i = 5\), \(i=1,\ldots ,5\), \(\gamma (\omega ) \in {\mathcal {U}}(0.9,1.1)\) is a positive parameter, \(Q=x+\sum _{i=1}^N y_i\).

    $$\begin{aligned} {\mathcal {X}}= & {} \{0\le x \le L\}. \\ F({{\mathbf {x}}},{{\mathbf {y}}},\omega )= & {} \left( \begin{aligned} \nabla r_2(y_1)-p(&Q,\omega )-y_1\nabla p(Q,\omega ) \\&\vdots \\ \nabla r_n(y_n)-p(&Q,\omega )-y_n\nabla p(Q,\omega ) \end{aligned} \right) . \\ {\mathcal {Y}}= & {} \{0\le y_j \le L, \quad j=1,\ldots , n\}. \end{aligned}$$

    The stochastic N-dimensional counterpart of Problem 2.

    $$\begin{aligned} {\mathbb {E}}[f({{\mathbf {x}}},{{\mathbf {y}}}(\omega ))], \text{ where } f(x,y(\omega ))= & {} \Vert x - \mathbf{1}\Vert ^2 + \Vert y(\omega )\Vert ^2. \\ {\mathcal {X}}= & {} \{0\le x_i \le 2, \quad i=1,\ldots , n\}. \\ F({{\mathbf {x}}},{{\mathbf {y}}},\omega )= & {} \left( \begin{aligned} 2y - 2x + \omega \end{aligned} \right) . \\ {\mathcal {Y}}= & {} \{\Vert y-\mathbf{1}\Vert ^2 \le 0.25 \}{, \text{ where } \omega \in {\mathcal {U}}(-0.5,0.5).} \end{aligned}$$
Table 12 Parameter specification for Problem 1

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, S., Shanbhag, U.V. & Yousefian, F. Complexity guarantees for an implicit smoothing-enabled method for stochastic MPECs. Math. Program. 198, 1153–1225 (2023). https://doi.org/10.1007/s10107-022-01893-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-022-01893-6

Mathematics Subject Classification

Navigation