Log in

Low-level laser therapy in 3D cell culture model using gingival fibroblasts

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Besides extensive data about the effects of low-level laser therapy (LLLT) on different cell types, so far, these results were obtained from monolayer cell culture models, which have limitations in terms of cell morphology and phenotype expression. Therefore, for better in vitro evaluation of the effects of LLLT, this study was performed with a 3D cell culture model, where gingival fibroblasts were seeded in collagen matrix. Cells isolated from a healthy patient were seeded in wells of 24-well plates with culture medium (DMEM) supplemented with 10 % fetal bovine serum and collagen type I solution. After 5 days, a serum-free DMEM was added to the matrices with cells that were subjected or not to three consecutive irradiations of LLLT by means of the LaserTABLE diode device (780 nm, 25 mW) at 0.5, 1.5, and 3 J/cm2. Twenty-four hours after the last irradiation, cell viability and morphology as well as gene expression of growth factors were assessed. Histological evaluation of matrices demonstrated uniform distribution and morphology of gingival fibroblasts within the collagen matrix. LLLT at 3 J/cm2 increased gingival fibroblast viability. Enhanced gene expression of hCOL-I and hEGF was observed for 0.5 J/cm2, while no significant changes were detected for the other irradiation densities tested. In conclusion, LLLT promoted biostimulation of gingival fibroblasts seeded in a 3D cell culture model, demonstrating that this model can be applied for phototherapy studies and that LLLT could penetrate the collagen matrix to increase cell functions related to tissue repair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bjordal JM, Couppé C, Chow RT, Tunér J, Ljunggren EA (2003) A systematic review of low level laser therapy with location-specific doses for pain from chronic joint disorders. Aust J Physiother 49:107–116

    Article  PubMed  Google Scholar 

  2. Cotler HB, Chow RT, Hamblin MR, Carroll J (2015) The use of low level laser therapy (LLLT) for musculoskeletal pain. MOJ Orthop Rheumatol 2:00068

    Article  PubMed  PubMed Central  Google Scholar 

  3. Tchanque-Fossuo CN, Ho D, Dahle SE, Koo E, Li CS, Rivkah Isseroff R, Jaqdeo J (2016) A systematic review of low-level light therapy for treatment of diabetic foot ulcer. Wound Repair Regen. doi:10.1111/wrr.12399

    PubMed  Google Scholar 

  4. Vale FA, Moreira MS, de Almeida FC, Ramalho KM (2015) Low-level laser therapy in the treatment of recurrent aphthous ulcers: a systematic review. Sci World J 2015:150412. doi:10.1155/2015/150412

    Google Scholar 

  5. Bjordal JM, Bensadoun RJ, Tuner J, Frigo L, Gjerde K, Lopes-Martins RA (2011) A systematic review with meta-analysis of the effect of low-level laser therapy (LLLT) in cancer therapy-induced oral mucositis. Support Care Cancer 19:1069–1077

    Article  PubMed  Google Scholar 

  6. Loncar B, Stipetic MM, Baricevic M, Risovic D (2011) The effect of low-level laser therapy on salivary glands in patients with xerostomia. Photomed Laser Surg 29:171–175

    Article  CAS  PubMed  Google Scholar 

  7. Bello-Silva MS, de Freitas PM, Aranha AC, Lage-Marques JL, Simões A, de Paula Eduardo C (2010) Low and hogh-intensity lasers in the treatment of herpes simplex virus 1 infection. Photomed Laser Surg 28:135–139

    Article  PubMed  Google Scholar 

  8. Muñoz Sanchez PJ, Capote Fermenías JL, Díaz Tejeda A, Tunér J (2012) The effect of 670-nm low laser therapy on herpes simplex type 1. Photomed Laser Surg 30:37–40

    Article  PubMed  Google Scholar 

  9. Migliorati C, Hewson I, Lalla RV, Antunes HS, Estilo CL, Hodgson B, Lopes NNF, Schubert MM, Bowen J, Elad S (2013) Systematic review of laser and other light therapy for the management of oral mucositis in cancer patients. Support Care Cancer 21:333–341

    Article  PubMed  Google Scholar 

  10. Ankri R, Lubart R, Taitelbaum H (2010) Estimation of the optimal wavelengths for laser-induced wound healing. Lasers Surg Med 42:760–764

    Article  PubMed  Google Scholar 

  11. Frigo L, Fávero GM, Lima HJC, Maria DA, Bjordal JM, Joensen J, Iversen VV, Marcos RL, Parizzoto NA, Lopes-Martins RAB (2010) Low-level laser irradiation (InGaAlP - 660 nm) increases fibroblast cell proliferation and reduces cell death in a dose-dependent manner. Photomed Laser Surg 28:S151–S156

    Article  CAS  PubMed  Google Scholar 

  12. Basso FG, Pansani TN, Turrioni APS, Bagnato VS, Hebling J, Souza Costa CA (2012) In vitro wound healing improvement by low-level laser therapy application in cultured gingival fibroblasts. Int J Dent. doi:10.1155/2012/719452

    PubMed  PubMed Central  Google Scholar 

  13. Basso FG, Oliveira CF, Kurachi C, Hebling J, de Souza Costa CA (2013) Biostimulatory effect of low-level laser therapy on keratinocytes in vitro. Lasers Med Sci 28:367–374

    Article  PubMed  Google Scholar 

  14. Pansani TN, Basso FG, Turrioni APS, Kurachi C, Hebling J, de Souza Costa CA (2014) Effects of low-level laser therapy on the proliferation and apoptosis of gingival fibroblasts treated with zoledronic acid. Int J Oral Maxillofac Surg 43:1030–1034

    Article  PubMed  Google Scholar 

  15. Basso FG, Pansani TN, Soares DG, Scheffel DL, Bagnato VS, de Souza Costa CA, Hebling J (2015) Biomodulation of inflammatory cytokines related to oral mucositis by low-level laser therapy. Photochem Photobiol 91:952–956

    Article  CAS  PubMed  Google Scholar 

  16. Pampaloni F, Reynaud EG, Stelzer EH (2007) The third dimension bridges the gap between cell culture and live tissue. Nat Rev Mol Cell Biol 8:839–845

    Article  CAS  PubMed  Google Scholar 

  17. Edmondson R, Broglie JJ, Adcock AF, Yang L (2014) Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. Assay Drug Technol 12:207–218

    Article  CAS  Google Scholar 

  18. Schwarz F, Aoki A, Sculean A, Becker J (2009) The impact of laser application on periodontal and peri-implant wound healing. Periodontol 2000 51:79–108

    Article  PubMed  Google Scholar 

  19. Ottaviani G, Gobbo M, Sturnega M, Martinelli V, Mano M, Zanconati F, Bussani R, Perinetti G, Long CS, De Lenarda R, Giacca M, Biasotto M, Zacchigna S (2013) Effect of class IV laser therapy on chemotherapy-induced oral mucositis. Am J Pathol 183:1747–1757

    Article  PubMed  Google Scholar 

  20. Feinberg SE, Aghaloo TL, Cunningham LL (2005) Role of tissue engineering in oral and maxillofacial reconstruction: findings of the 2005 AAOMS research summit. J Oral Maxillofac Surg 63:1418–1425

    Article  PubMed  Google Scholar 

  21. Moharamzadeh K, Brook IM, Van Noort R, Scutt AM, Thornhill MH (2007) Tissue-engineered oral mucosa: a review of the scientific literature. J Dent Res 86:115–124

    Article  CAS  PubMed  Google Scholar 

  22. Liu J, Bian Z, Kuijpers-Jagtman AM, Von den Hoff JW (2010) Skin and oral mucosa equivalents: construction and performance. Orthod Craniofac Res 13:11–20

    Article  CAS  PubMed  Google Scholar 

  23. Moharamzadeh K, Colley H, Murdoch C, Hearnden V, Chai WL, Brook IM, Thornhill MH, MacNeil S (2012) Tissue-engineered oral mucosa. J Dent Res 91:642–650

    Article  CAS  PubMed  Google Scholar 

  24. Dongari-Bagtzoglou A, Kashleva H (2006) Development of a highly reproducible three-dimensional organotypic model of the oral mucosa. Nat Protoc 1:2012–2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lins EC, Oliveira CF, Guimarães OC, Costa CA, Kurachi C, Bagnato VS (2013) A novel-785nm laser diode-based system for standardization of cell culture irradiation. Photomed Laser Surg 31:466–473

    Article  PubMed  PubMed Central  Google Scholar 

  26. Izumi K, Takacs G, Terashi H, Feinberg SE (1999) Ex vivo development of a composite human oral mucosal equivalent. J Oral Maxillofac Surg 57:571–577

    Article  CAS  PubMed  Google Scholar 

  27. Izumi K, Song J, Feinberg SE (2004) Development of a tissue-engineered human oral mucosa: from the bench to the bed side. Cells Tissues Organs 176:134–152

    Article  PubMed  Google Scholar 

  28. Scheffel DLS, Soares DG, Basso FG, de Souza Costa CA, Pashley P, Hebling J (2015) Transdentinal cytotoxicity of glutaraldehyde on odontoblast-like cells. J Dent 43:997–1006

    Article  CAS  PubMed  Google Scholar 

  29. Bartold PM, Walsh LJ, Narayanan AS (2000) Molecular and cell biology of gingiva. Periodontol 2000(24):28–55

    Article  Google Scholar 

  30. Mueller-Klieser W (1997) Three dimensional cell cultures: from molecular mechanisms to clinical applications. Am J Physiol 273:1109–1123

    Google Scholar 

  31. Astashkina A, Grainger DW (2014) Critical analysis of 3-D organoid in vitro cell culture for high-throughput drug candidate toxicity assessments. Adv Drug Deliv Rev 69–70:1–18

    Article  PubMed  Google Scholar 

  32. Matsusaki M, Case CP, Akashi M (2014) Three-dimensional cell culture technique and pathophysiology. Adv Drug Deliv Rev 74:95–103

    Article  CAS  PubMed  Google Scholar 

  33. Fitzgerald KA, Malhotra M, Curtin CM, O’Brien FJ, O’Driscoll CM (2015) Life in 3D is never flat: 3D models to optimize drug delivery. J Control Release 215:39–54

    Article  CAS  PubMed  Google Scholar 

  34. Hawkins-Evans D, Arahamse H (2008) Efficacy of three different laser wavelengths for in vitro wound healing. Photodermatol Photoimmun Photomed 24:199–210

    Article  Google Scholar 

  35. Barrientos S, Stokadinovic O, Golinko MS, Brm H, Tomic-Canic M (2008) Growth factors and cytokines in wound healing. Wound Repair Regen 16:585–601

    Article  PubMed  Google Scholar 

  36. Velnar T, Bailey T, Smrkolj V (2009) The wound healing process: an overview of the cellular and molecular mechanisms. J Int Med Res 37:1528–1542

    Article  CAS  PubMed  Google Scholar 

  37. Werner S, Krieg T, Smola H (2007) Keratinocyte-fibroblast interactions in wound healing. J Investig Dermatol 127:998–1008

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Fundação de Amparo à Pesquisa do Estado de São Paulo - FAPESP (grant: 2013/05879-0 and PD: 2012/17947-8) and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (303599/2014 – Pq 1A and 307696/2014 Pq 1B) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Alberto de Souza Costa.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basso, F.G., Soares, D.G., de Souza Costa, C.A. et al. Low-level laser therapy in 3D cell culture model using gingival fibroblasts. Lasers Med Sci 31, 973–978 (2016). https://doi.org/10.1007/s10103-016-1945-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-016-1945-4

Keywords

Navigation