Log in

Green synthesis of iron oxide nanoparticles for arsenic remediation in water and sludge utilization

  • Original Paper
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

Iron oxide nanoparticles (IONPs) were synthesized via an affordable and environmentally friendly route using waste banana peel extract. The polyphenol-rich extract acted as a stabilizing and reducing agent resulting in formation of α-Fe2O3 with a particle size of around 60 nm. The composition, phase, morphology and size of the nanoparticles were analyzed by X-ray diffraction, field emission scanning electron microscopy, Fourier transform infrared spectroscopy, transmission electron microscopy and a Zetasizer. The efficiency of the IONPs was assessed in terms of arsenic(V) remediation from contaminated water within the range of 0.1–2.0 mg/L. Batch study showed that IONPs had a high As(V) adsorption capacity of about 2.715 mg/g at 40 °C. A statistical approach, viz. an artificial neural network, was adapted for modeling and optimization of the process parameters for achieving maximum As(V) removal efficiency. A set of 54 experimental sets were conducted and the predicted model generated showed an R2 value of 0.9971 and the corresponding mean squared error value was 0.0000601. Surface binding of the As(V) phenomenon on the green synthesized IONPs was explained on the basis of FTIR spectroscopy, X-ray photoelectron spectroscopy, X-ray fluorescence spectroscopy of the control and the As(V)-loaded IONPs.The spent adsorbent was successfully immobilized in phosphate glass matrix with an objective to provide a complete and sustainable solution for arsenic contamination.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

Download references

Acknowledgements

The authors would like to acknowledge the Director, CSIR-CGCRI, India, for granting permission to carry out this research work. Author A. Majumder acknowledges the Ministry of Human Resource Development (MHRD), India, for providing the GATE fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sourja Ghosh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 95 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majumder, A., Ramrakhiani, L., Mukherjee, D. et al. Green synthesis of iron oxide nanoparticles for arsenic remediation in water and sludge utilization. Clean Techn Environ Policy 21, 795–813 (2019). https://doi.org/10.1007/s10098-019-01669-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-019-01669-1

Keywords

Navigation