Log in

Romberg ratio coefficient in quiet stance and postural control in Parkinson’s disease

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

The aim of this study was to determine the function of visual afference in postural control in Parkinson patients. We enrolled 29 patients and 30 healthy controls. The stabilometry test was performed for posture and balance and Romberg ratio coefficients were calculated. In addition, the Berg Balance Scale and the 6-Minute Walking Test were administered to assess balance and functional exercise capacity; the Unified Parkinson’s Disease Rating Scale was used to determine the stage of the disease; and the Short Form (SF)-36 Health Survey was given to collect information on quality of life. Results: significantly longer Center of Pressure (CoP) sway lengths were observed in the parkinson group. The Romberg index for CoP length of sway in parkinson patients was 94.3 ± 19.3%, versus 147.4 ± 120.6% for the control group. (p = 0.025). Conclusion: Parkinson patients use the increase in CoP sway length and ellipse area to stabilize their balance and sight does not facilitate static postural control as in healthy subjects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Rajput AH, Rajput ML, Ferguson LW, Rajput A (2017) Baseline motor findings and Parkinson disease prognostic subtypes. Neurology 89(2):138–143. https://doi.org/10.1212/WNL.0000000000004078

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Chou KL, Elm JJ, Wielinski CL et al (2017) Factors associated with falling in early, treated Parkinson’s disease: the NET-PD LS1 cohort. J Neurol Sci 377:137–143. https://doi.org/10.1016/j.jns.2017.04.011

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bonnet CT, Delval A, Defebvre L (2015) Parkinson’s disease-related impairments in body movement, coordination and postural control mechanisms when performing 80° lateral gaze shifts. IEEE Trans Neural Syst Rehabil Eng 23(5):849–856. https://doi.org/10.1109/TNSRE.2014.2369455

    Article  PubMed  Google Scholar 

  4. Błaszczyk JW, Orawiec R (2011) Assessment of postural control in patients with Parkinson’s disease: sway ratio analysis. Hum Mov Sci 30(2):396–404. https://doi.org/10.1016/j.humov.2010.07.017

    Article  PubMed  Google Scholar 

  5. Lahr J, Pereira MP, Pelicioni PH et al (2015) Parkinson’s disease patients with dominant hemibody affected by the disease rely more on vision to maintain upright postural control. Percept Mot Skills 121(3):923–934. https://doi.org/10.2466/15.PMS.121c26x0

    Article  PubMed  Google Scholar 

  6. Bronstein AM, Hood JD, Gresty MA, Panagi C (1990) Visual control of balance in cerebellar and parkinsonian syndromes. Brain 113(Pt 3):767–779

    Article  PubMed  Google Scholar 

  7. Brown LA, Cooper SA, Doan JB, Dickin DC et al (2006) Parkinsonian deficits in sensory integration for postural control: temporal response to changes in visual input. Parkinsonism Relat Disord 12(6):376–381. https://doi.org/10.1016/j.parkreldis.2006.03.004

    Article  PubMed  Google Scholar 

  8. Nallegowda M, Singh U, Handa G et al (2004) Role of sensory input and muscle strength in maintenance of balance, gait, and posture in Parkinson’s disease: a pilot study. Am J Phys Med Rehabil 83(12):898–908

    Article  PubMed  Google Scholar 

  9. Suarez H, Geisinger D, Ferreira ED et al (2011) Balance in Parkinson’s disease patients changing the visual input. Braz J Otorhinolaryngol 77(5):651–655

    Article  PubMed  Google Scholar 

  10. Huh YE, Hwang S, Kim K, Chung WH, Youn J, Cho JW (2016) Postural sensory correlates of freezing of gait in Parkinson’s disease. Parkinsonism Relat Disord 25:72–77. https://doi.org/10.1016/j.parkreldis.2016.02.004

    Article  PubMed  Google Scholar 

  11. Pilgram LM, Earhart GM, Pickett KA (2016) Impact of limiting visual input on gait: individuals with Parkinson disease, age-matched controls, and healthy young participants. Somatosens Mot Res 33(1):29–34. https://doi.org/10.3109/08990220.2016.1152237

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hoehn MM, Yahr MD (1967) Parkinsonism: Onset, Progression, and Mortality. Neurology 17:427–442

    Article  PubMed  CAS  Google Scholar 

  13. Folstein MF, Folstein SE, McHugh PR (1975) “Mini Mental State” a practical method for grading the cognitive state of patients for the clinicians. J Psychiatr Res 12:189–198

    Article  PubMed  CAS  Google Scholar 

  14. Ferrazzoli D, Ortelli P, Maestri R et al (2016) Does cognitive impairment affect rehabilitation outcome in Parkinson’s disease? Front Aging Neurosci 8:192. https://doi.org/10.3389/fnagi.2016.00192

    Article  PubMed  PubMed Central  Google Scholar 

  15. Huskisson EC (1974) Measurement of pain. Lancet 2:1127–1131

    Article  PubMed  CAS  Google Scholar 

  16. Berg K, Wood-Dauphinee SL, Williams JL (1992) Measuring balance in the elderly: validation of an instrument. Can J Public Health 83(supp 2):S7–S11

    PubMed  Google Scholar 

  17. Keus SH, Nieuwboer A, Bloem BR et al (2009) Clinimetric analyses of the modified Parkinson activity scale. Parkinsonism Relat Disord 15(4):263–269. https://doi.org/10.1016/j.parkreldis.2008.06.003

    Article  PubMed  CAS  Google Scholar 

  18. Butland RJ, Pang J, Gross ER et al (1982) Two-, six-, and 12-minute walking tests in respiratory disease. Br Med J 284(6329):1607–1608

    Article  CAS  Google Scholar 

  19. Apolone G, Mosconi P (1998) The Italian SF-36 Health Survey: translation, validation and norming. J Clin Epidemiol 51:1025–1036

    Article  PubMed  CAS  Google Scholar 

  20. Vandenbroucke JP, von Elm E, Altman DG, Gøtzsche PC, Mulrow CD, Pocock SJ, Poole C, Schlesselman JJ, Egger M (2007) STROBE initiative Strengthening the Reporting of Observational Studies in Epidemiology (STROBE): explanation and elaboration. Ann Intern Med 147(8):W163–94

  21. Tjernström F, Björklund M, Malmström EM (2015) Romberg ratio in quiet stance posturography—test to retest reliability. Gait Posture 42(1):27–31. https://doi.org/10.1016/j.gaitpost.2014.12.007

    Article  PubMed  Google Scholar 

  22. Manabe Y, Honda E, Shiro Y, Sakai K, Kohira I, Kashihara K et al (2001) Fractal dimension analysis of static stabilometry in Parkinson’s disease and spinocerebellar ataxia. Neurol Res 23(4):397–404. https://doi.org/10.1179/016164101101198613

    Article  PubMed  CAS  Google Scholar 

  23. Adamovich SV, Berkinblit MB, Hening W, Sage J, Poizner H (2001) The interaction of visual and proprioceptive inputs in pointing to actual and remembered targets in Parkinson’s disease. Neuroscience 104:1027–1041

    Article  PubMed  CAS  Google Scholar 

  24. Van den Heuvel MR, Daffertshofer A, Beek PJ, Kwakkel G, van Wegen EE (2016) The effects of visual feedback during a rhythmic weight-shifting task in patients with Parkinson’s disease. Gait Posture 48:140–145. https://doi.org/10.1016/j.gaitpost.2016.03.020

    Article  PubMed  Google Scholar 

  25. Jacobs JV, Horak FB (2006) Abnormal proprioceptive-motor integration contributes to hypometric postural responses of subjects with Parkinson’s disease. Neuroscience 141(2):999–1009. https://doi.org/10.1016/j.neuroscience.2006.04.014

    Article  PubMed  CAS  Google Scholar 

  26. Frenklach A, Louie S, Koop MM, Bronte-Stewart H (2009) Excessive postural sway and the risk of falls at different stages of Parkinson’s disease. Mov Disord 24(3):377–385. https://doi.org/10.1002/mds.22358

    Article  PubMed  Google Scholar 

  27. Louie S, Koop MM, Frenklach A, Bronte-Stewart H (2009) Quantitative lateralized measures of bradykinesia at different stages of Parkinson’s disease: the role of the less affected side. Mov Disord 24(13):1991–1997. https://doi.org/10.1002/mds.22741

    Article  PubMed  Google Scholar 

  28. Iosa M, Fusco A, Morone G, Paolucci S (2012) Effects of visual deprivation on gait dynamic stability. ScientificWorldJournal 2012:1–7. https://doi.org/10.1100/2012/974560

    Article  Google Scholar 

  29. Panyakaew P, Anan C, Bhidayasiri R (2015) Visual deprivation elicits subclinical postural inflexibilities in early Parkinson’s disease. J Neurol Sci 349(1-2):214–219. https://doi.org/10.1016/j.jns.2015.01.022

    Article  PubMed  Google Scholar 

  30. Schlick C, Ernst A, Bötzel K, Plate A, Pelykh O, Ilmberger J (2016) Visual cues combined with treadmill training to improve gait performance in Parkinson’s disease: a pilot randomized controlled trial. Clin Rehabil 30(5):463–471. https://doi.org/10.1177/0269215515588836

    Article  PubMed  Google Scholar 

  31. Barbosa AF, Souza Cde O, Chen J, Francato DV, Caromano FA, Chien HF et al (2015) The competition with a concurrent cognitive task affects posturographic measures in patients with Parkinson disease. Arq Neuropsiquiatr 73(11):906–912. https://doi.org/10.1590/0004-282X20150153

    Article  PubMed  Google Scholar 

  32. Rocha PA, Porfírio GM, Ferraz HB, Trevisani VF (2014) Effects of external cues on gait parameters of Parkinson’s disease patients: a systematic review. Clin Neurol Neurosurg 124:127–134. https://doi.org/10.1016/j.clineuro.2014.06.026

    Article  PubMed  Google Scholar 

  33. Heremans E, Nieuwboer A, Feys P, Vercruysse S, Vandenberghe W, Sharma N, Helsen WF (2012) External cueing improves motor imagery quality in patients with Parkinson disease. Neurorehabil Neural Repair 26(1):27–35. https://doi.org/10.1177/1545968311411055

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank the Physiotherapy School of S. Filippo Neri Hospital “Sapienza” University of Rome. The authors would like to thank all patients who participated in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teresa Paolucci.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paolucci, T., Iosa, M., Morone, G. et al. Romberg ratio coefficient in quiet stance and postural control in Parkinson’s disease. Neurol Sci 39, 1355–1360 (2018). https://doi.org/10.1007/s10072-018-3423-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-018-3423-1

Keywords

Navigation