Log in

Effects of black raspberry extract on gut microbiota, microbial metabolites, and expressions of the genes involved in cholesterol and bile acid metabolisms in rats fed excessive choline with a high-fat diet

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

In our previous study, black raspberry (BR) reduced the serum levels of trimethylamine-N-oxide and cholesterol in rats fed excessive choline with a high-fat diet (HFC). We hypothesized that gut microbiota could play a crucial role in the production of trimethylamine and microbial metabolites, and BR could influence gut microbial composition. This study aimed to elucidate the role of BR on changes in gut microbiota and microbial metabolites in the rats. The phylogenetic diversity of gut microbiota was reduced in the rats fed HFC, while that in the BR-fed group was restored. The BR supplementation enriched Bifidobacterium and reduced Clostridium cluster XIVa. In the BR-fed group, most cecal bile acids and hippuric acid increased, while serum lithocholic acid was reduced. The BR supplementation upregulated Cyp7a1 and downregulated Srebf2. These results suggest that BR extract may change gut bacterial community, modulate bile acids, and regulate gene expression toward reducing cholesterol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, Alexander H, Alm EJ, Arumugam M, Asnicar F. Reproducible, interactive, scalable and extensible microbiome data science using QIIME2. Nature Biotechnology. 37: 852-857 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown MS, Goldstein JL. The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell. 89: 31-340 (1997)

    Article  Google Scholar 

  • Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2 is an open-source software package that denoises and removes sequencing errors from Illumina amplicon. Nature Methods. 13: 581-583 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chambers KF, Day PE, Aboufarrag HT, Kroon PA. Polyphenol effects on cholesterol metabolism via bile acid biosynthesis, CYP7A1: a review. Nutrients. 11: 2588 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiang JYL. Regulation of bile acid synthesis: pathways, nuclear receptors, and mechanisms. Journal of Hepatology. 40: 539-551 (2004)

    Article  CAS  PubMed  Google Scholar 

  • Cho CE, Taesuwan S, Malysheva OV, Bender E, Tulchinsky NF, Yan J, Sutter JL, Caudill MA. Trimethylamine-N-oxide (TMAO) response to animal source foods varies among healthy young men and is influenced by their gut microbiota composition: A randomized controlled trial. Molecular Nutrition & Food Research. 61: 1770016 (2017)

    Article  Google Scholar 

  • Cotillard A, Kennedy SP, Kong LC, Prifti E, Pons N, Le Chatelier E, Almeida M, Quinquis B, Levenez F, Galleron N, Gougis S, Rizkalla S, Batto JM, Renault P, ANR MicroObes consortium, Doré J, Zucker JD, Clément K, Ehrlich SD. Dietary intervention impact on gut microbial gene richness. Nature. 500: 585-588 (2013)

    Article  CAS  PubMed  Google Scholar 

  • de Ferrars RM, Czank C, Zhang Q, Botting NP, Kroon PA, Cassidy A, Kay CD. The pharmacokinetics of anthocyanins and their metabolites in humans. British Journal of Pharmacology. 171: 3268-3282 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  • Ding L, Chang M, Guo Y, Zhang L, Xue C, Yanagita T, Zhang T, Wang Y. Trimethylamine-N-oxide (TMAO)-induced atherosclerosis is associated with bile acid metabolism. Lipids in Health and Disease. 17: 286 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gowd V, Karim N, Shishir M, **e L, Chen W. Dietary polyphenols to combat the metabolic diseases via altering gut microbiota. Trends in Food Science & Technology. 93: 81-93 (2019)

    Article  CAS  Google Scholar 

  • Gu J, Thomas-Ahner JM, Riedl KM, Bailey MT, Vodovotz Y, Schwartz SJ, Clinton SK. Dietary black raspberries impact the colonic microbiome and phytochemical metabolites in mice. Molecular Nutrition & Food Research. 63: 1800636 (2019)

    Article  Google Scholar 

  • Huang F, Zheng X, Ma X, Jiang R, Zhou W, Zhou S, Zhang Y, Lei S, Wang S, Kuang J, Han X, Wei M, You Y, Li M, Li Y, Liang D, Liu J, Chen T, Wei R, Rajani C, Shen C, **e G, Bian Z, Li H, Zhao A, Jia W. Theabrownin from Pu-erh tea attenuates hypercholesterolemia via modulation of gut microbiota and bile acid metabolism. Nature Communications. 10: 4971 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  • Jeong HS, Hong SJ, Lee TB, Kwon JW, Jeong JT, Joo HJ, Park JH, Ahn CM, Yu CW, Lim DS. Effects of black raspberry on lipid profiles and vascular endothelial function in patients with metabolic syndrome. Phytotherapy Research. 28: 1492-1498 (2014)

    Article  PubMed  Google Scholar 

  • Jung H, Lee HJ, Cho H, Hwang KT. Anti-inflammatory activities of Rubus fruit anthocyanins in inflamed human intestinal epithelial cells. Journal of Food Biochemistry. 39: 300-309 (2015)

    Article  CAS  Google Scholar 

  • Kim B, Park Y, Wegner CJ, Bolling BW, Lee J. Polyphenol-rich black chokeberry (Aronica melanocarpa) extract regulates the expression of genes critical for intestinal cholesterol flux in Caco-2 cells. The Journal of Nutritional Biochemistry. 24: 1564-1570 (2013)

    Article  CAS  PubMed  Google Scholar 

  • Koeth RA, Wang Z, Levison BS, Buffa JA, Org E, Sheehy BT, Britt EB, Fu X, Wu Y, Li L, Smith JD, DiDonato JA, Chen J, Li H, Wu GD, Lewis JD, Warrier M, Brown JM, Krauss RM, Tang WHW, Bushman FD, Lusis AJ, Hazen SL. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nature Medicine. 19: 576-585 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee H, Kim J, An J, Lee S, Kong H, Song Y, Choi HR, Lee SJ, Chae KS, Kwon JW, Kim KJ. Amelioration of hyperglycemia by Rubus occidentalis (black raspberry) and increase in short-chain fatty acids producing bacteria. Journal of Functional Foods. 54: 433-439 (2019)

    Article  CAS  Google Scholar 

  • Lim T, Ryu J, Lee K, Park SY, Hwang KT. Protective effects of black raspberry (Rubus occidentalis) extract on hypercholesterolemia and hepatic inflammation in rats fed high-fat and high-choline diets. Nutrients. 12: 2448 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim T, Lee K, Kim RH, Ryu J, Park SY, Cha KH, Koo SY, Hwang KT. Black raspberry extract can lower serum LDL cholesterols via modulation of gut microbial composition and serum bile acid profile in rats fed trimethylamine-N-oxide with a high-fat diet. Food Science and Biotechnology. 31: 1041-1051 (2022)

    Article  CAS  PubMed  Google Scholar 

  • Lin H, An Y, Hao F, Wang Y, Tang H. Correlations of fecal metabonomic and microbiomic changes induced by high-fat diet in the pre-obesity state. Scientific Reports. 6: 21618 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo J, Lin X, Bordiga M, Brennan C, Xu B. Manipulating effects of fruits and vegetables on gut microbiota – a critical review. International Journal of Food Science and Technology. 56: 2055-2067 (2021)

    Article  CAS  Google Scholar 

  • Meslier V, Laiola M, Roager HM, de Filippis F, Roume H, Quinquis B, Giacco R, Mennella I, Ferracane R, Pons N, Pasolli E, Rivellese A, Dragsted LO, Vitaglione P, Ehrlich SD, Ercolini D. Mediterranean diet intervention in overweight and obese subjects lowers plasma cholesterol and causes changes in the gut microbiome and metabolome independently of energy intake. Gut. 69: 1258-1268 (2020)

    Article  CAS  PubMed  Google Scholar 

  • Molusky MM, Hsieh J, Lee SX, Ramakrishnan R, Tascau L, Haeusler RA, Accili D, Tall AR. Metformin and AMP Kinase activation increase expression of the sterol transporters ABCG5/8 (ATP-binding cassette transporter G5/G8) with potential antiatherogenic consequences. Atherosclerosis, Thrombosis, and Vascular Biology. 38: 1493-1503 (2018)

    Article  CAS  Google Scholar 

  • Moyer RA, Hummer KE, Finn CE, Frei B, Wrolstad RE. Anthocyanins, phenolics, and antioxidant capacity in diverse small fruits: Vaccinum, Rubus, and Ribes. Journal of Agricultural and Food Chemistry. 50: 519-525 (2002)

    Article  CAS  PubMed  Google Scholar 

  • Nagpal R, Wang S, Woods LCS, Seshie O, Chung ST, Shively CA, Register TC, Craft S, McClain DA, Yadav H. Comparative microbiome signatures and short-chain fatty acids in mouse, rat, non-human primate, and human feces. Frontiers in Microbiology. 9: 2897 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  • Pallister T, Jackson MA, Martin TC, Zierer J, Jennings A, Mohney RP, MacGregor A, Steves CJ, Cassidy A, Spector TD, Menni C. Hippurate as a metabolomic marker of gut microbiome diversity: Modulation by diet and relationship to metabolic syndrome. Scientific Reports. 7: 13670 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  • Parks DJ, Blanchard SG, Bledsoe RK, Chandra G, Consler TG, Kliewer SA, Stimmel JB, Wilson TM, Zavacki AM, Moore DD, Lehmann JM. Bile acids: natural ligands for an orphan nuclear receptor. Science. 284: 1365-1368 (1999)

    Article  CAS  PubMed  Google Scholar 

  • Poll BG, Cheema MU, Pluznick JL. Gut microbial metabolites and blood pressure regulation: focus on SCFAs and TMAO. Physiology. 35: 275-284 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rath S, Rud T, Pieper DH, Vital M. Potential TMA-producing bacteria are ubiquitously found in mammalia. Frontiers in Microbiology. 10: 2966 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  • Romano KA, Vivas EI, Amador-Noguez D, Rey FE. Intestinal microbiota composition modulates choline bioavailability from diet and accumulation of the proatherogenic metabolite trimethylamine-N-oxide. mBio. 6: e02481-14 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  • Shaddel R, Hesari J, Azadmard-Damirchi S, Hamishehkar H, Fathi-Achachlouei B, Huang Q. Double emulsion followed by complex coacervation as a promising method for protection of black raspberry anthocyanins. Food Hydrocolloids. 77: 803-816 (2018)

    Article  CAS  Google Scholar 

  • Wahlström A, Sayin SI, Marschall H, Bäckhed F. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metabolism. 24: 41-50 (2016)

    Article  PubMed  Google Scholar 

  • Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, DuGar B, Feldstein AE, Britt EB, Fu X, Chung YM. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 472: 57-63 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilmanski T, Rappaport N, Earls JC, Magis AT, Manor O, Lovejoy J, Omenn GS, Hood L, Gibbons SM, Price ND. Blood metabolome predicts gut microbiome α-diversity in humans. Nature Biotechnology. 37: 1217-1228 (2019)

    Article  CAS  PubMed  Google Scholar 

  • Winston JA, Theriot CM. Diversification of host bile acids by members of the gut microbiota. Gut Microbes. 11: 158-171 (2020)

    Article  PubMed  Google Scholar 

  • Zhu W, Gregory JC, Org E, Buffa JA, Gupta N, Wang Z, Li L, Fu X, Wu Y, Mehrabian M. Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell. 24: 111-124 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1D1A1B03028407).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keum Taek Hwang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 23 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, T., Lee, K., Kim, R.H. et al. Effects of black raspberry extract on gut microbiota, microbial metabolites, and expressions of the genes involved in cholesterol and bile acid metabolisms in rats fed excessive choline with a high-fat diet. Food Sci Biotechnol 32, 577–587 (2023). https://doi.org/10.1007/s10068-023-01267-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-023-01267-4

Keywords

Navigation