Log in

Anti-inflammatory effect of the extract from fermented Asterina pectinifera with Cordyceps militaris mycelia in LPS-induced RAW264.7 macrophages

  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

In our previous work, Asterina pectinifera was fermented with Cordyceps militaris mycelia to improve its bioactivities and was reported to have strong antioxidant activities. The aim of the current study was to investigate its anti-inflammatory effect and mechanisms of action. In this study, we observed the inhibitory effect of the extract from fermented A. pectinifera with C. militaris mycelia (FACM) on nitric oxide (NO) production and its molecular mechanism in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. FACM could decrease LPS-induced NO production. Western blot analysis showed that FACM could down-regulate LPS-induced expression of inducible NO synthase without affecting cyclooxygenase-2. Moreover, FACM exhibited anti-inflammatory activity in LPS-induced RAW264.7 mouse macrophage cells through proinflammatory mediators including TNF-α and IL-6 via nuclear factor kappa B pathway. FACM inhibited LPS-induced phosphorylation of extracellular-signal-regulated kinase expression. Our results suggest that FACM may be a potential candidate for inflammation therapy by attenuating the generation of cytokines, production of NO, and generation of ROS in RAW264.7 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kang KH, Kim JM. The predation of trumpet shell, Charonia sp., on eight different marine invertebrate species. Aquacult Res. 35: 1202–1206 (2004).

    Article  Google Scholar 

  2. National Federat. Fish. Cooperate, Report of National Federation of Fisheries Cooperatives about starfish removal project, Seoul (2011).

  3. Seo JK. Conformation and biological activity of Mastoparan B and its analogs: Isolation and characterization of the biological substances from inshore hagfish (Eptatretus burgeri) skin and starfish (Asterina pectinifera), Thesis, Pukyong National University (1997).

  4. Jo WS, Choi YJ, Kim HJ, Nam BH, Lee GA, Seo SY, Lee SW, Jeong MH. Methanolic extract of Asterina pectinifera inhibits LPS-induced inflammatory mediators in murine macrophage. Toxicol Res. 26: 37–46 (2010).

    Article  Google Scholar 

  5. Jeong MH, Yang KM, Kim JM, Nam BH, Kim GY, Lee SW, Seo SY, Jo WS. Inhibitory effects of Asterina pectinifera extracts on melanin biosynthesis through tyrosinase activity. Int J Mol Med. 31: 205–212 (2013).

    Article  Google Scholar 

  6. Nam KS, Shon YH. Chemopreventive effects of polysaccharides extract from Asterina pectinifera on HT-29 human colon adenocarcinoma cells. BMB Rep. 42: 277–280 (2009).

    Article  CAS  Google Scholar 

  7. Yang CH, Kao YH, Huang KS, Wang CY, Lin LW. Cordyceps militaris and mycelial fermentation induced apoptosis and autophagy of human glioblastoma cells. Cell Death Dis. 3: e431 (2012).

    Article  Google Scholar 

  8. Stone R. Last stand for the body snatcher of the himalayas? Science 322: 1182 (2008).

    Article  CAS  Google Scholar 

  9. Stone R. Improbable partners aim to bring biotechnology to a himalayan kingdom. Science 327: 940–941 (2010).

    Article  CAS  Google Scholar 

  10. Tuli HS, Sharma AK, Sandhu SS. Optimization of fermentation conditions for cordycepin production using Cordyceps militaris 3936. JBCS 1: 35–47 (2014).

    Google Scholar 

  11. Yoshikaw N, Nakamura K, Yamaguchi Y, Kagota S, Shinozuka K, Kunitomo M. Antitumour activity of cordycepin in mice. Clin Exp Pharmacol Physiol. 31: S51–S53 (2004).

    Article  Google Scholar 

  12. Chen Y, Chen YC, Lin YT, Huang SH, Wang SM. Cordycepin induces apoptosis of CGTH W-2 thyroid carcinoma cells through the calcium-calpain-caspase 7-PARP pathway. J Agric Food Chem. 58: 11645–11652 (2010).

    Article  CAS  Google Scholar 

  13. Wehbe-Janek H, Shi Q, Kearney CM. Cordycepin/hydroxyurea synergy allows low dosage efficacy of cordycepin in MOLT-4 leukemia cells. Anticancer Res. 27: 3143–3146 (2007).

  14. Xu HL, Zhang LJ, Shi H, Zhu X, He X. Effects of cordycepin on Hep G2 and EA. hy926 cells: potential antiproliferative, antimetastatic and anti-angiogenic effects on hepatocellular carcinoma. Oncol Lett. 7: 1556–62 (2014).

  15. Won SY, Park EH. Anti-inflammatory and related pharmacological activities of cultured mycelia and fruiting bodies of Cordyceps militaris. J Ethnopharmacol. 96: 555–561 (2005).

    Article  Google Scholar 

  16. Tang YJ, Zhong JJ. Fed-batch fermentation of Ganoderma lucidum for hyperproduction of polysaccharide and ganoderic acids. Enzyme Microb Tech. 31: 20–8 (2002).

    Article  CAS  Google Scholar 

  17. Park JP, Kim SW, Hwang HJ, Yun JW. Optimization of submerged culture conditions for the mycelial growth and exo-biopolymer production by Cordyceps militaris. Lett App Microb. 33: 76–81 (2001).

    Article  CAS  Google Scholar 

  18. Fang QH, Zhong JJ. Submerged fermentation of higher fungus Ganoderma lucidum for production of valuable bioactive metabolites—ganoderic acid and polysaccharide. Biochem Eng J. 10: 61–5 (2002).

    Article  CAS  Google Scholar 

  19. Baniyash M, Sade-Feldman M, Kanterman J. Chronic inflammation and cancer: suppressing the suppressors. Cancer Immunol Immunother. 63: 11–20 (2014).

    Article  CAS  Google Scholar 

  20. Ferreira ST, Clarke JR, Bomfim TR, De Felice FG. Inflammation, defective insulin signaling, and neuronal dysfunction in Alzheimer’s disease. Alzheimers Dement. 10: S76–S83 (2014).

    Article  Google Scholar 

  21. Esser N, Legrand-Poels S, Piette J, Scheen AJ, Paquot N. Inflammation as a link between obesity, metabolic syndrome and type 2 diabetes. Diabetes Res Clin Pract. 105: 141–150 (2014).

    Article  CAS  Google Scholar 

  22. Golia E, Limongelli G, Natale F, Fimiani F, Maddaloni V, Pariggiano I, Bianchi R, Crisci M, D’Acierno L, Giordano R, Palma GD, Conte M, Golino P, Russo MG, Calabrò R, Calabrò P. Inflammation and cardiovascular disease: from pathogenesis to therapeutic target. Curr Atheroscler Rep. 16: 1–7 (2014).

    Article  CAS  Google Scholar 

  23. Li H, Yoon JH, Won HJ, Ji HS, Yuk HJ, Park KH, Park HY, Jeong TS. Isotrifoliol inhibits pro-inflammatory mediators by suppression of TLR/NF-κB and TLR/MAPK signaling in LPS-induced RAW264.7 cells. Int Immunopharmacol. 45: 110–119 (2017).

    Article  CAS  Google Scholar 

  24. Abarikwu SO. Kolaviron, a natural flavonoid from the seeds of Garcinia kola, reduces LPS-induced inflammation in macrophages by combined inhibition of IL-6 secretion, and inflammatory transcription factors, ERK1/2, NF-kappaB, p38, Akt, p-c-JUN and JNK. Biochim Biophys Acta. 1840: 2373–2381 (2014).

    Article  CAS  Google Scholar 

  25. Park PJ, Je JY, Kim SK. Free radical scavenging activities of differently deacetylated chitosans using an ESR spectrometer. Carbohydr Polym. 55: 17–22 (2004).

    Article  CAS  Google Scholar 

  26. Chung HT, Pae HO, Choi BM, Billiar TR, Kim YM. Nitric oxide as a bioregulator of apoptosis. Biochem Biophys Res Commun. 282: 1075–1079 (2001).

    Article  CAS  Google Scholar 

  27. **e QW, Cho HJ, Calaycay J, Mumford RA, Swiderek KM, Lee TD. Cloning and characterization of inducible nitric oxide synthase from mouse macrophages. Science 256: 225–228 (1992).

    Article  CAS  Google Scholar 

  28. Asehnoune K, Strassheim D, Mitra S, Kim JY, Abraham E. Involvement of PKC alpha/beta in TLR4 and TLR2 dependent activation of NF-κB. Cell Signal. 17: 385–394 (2005).

    Article  CAS  Google Scholar 

  29. Takeda K, Akira S. Toll-like receptors in innate immunity. Int Immunol. 17: 1–14 (2005).

    Article  CAS  Google Scholar 

  30. Kim YS, Kim EK, Natarajan SB, Hwang JW, Kim SE, Jeon NJ, Lee JW, Jeong JH, Kim HJ, Park PJ. Radical scavenging activities of Asterina pectinifera fermented with Cordyceps militaris mycelia. Food Sci Biotechnol. 25(S): 97–101 (2016).

  31. Duque GA, Descoteaux A. Macrophage cytokines: involvement in immunity and infectious diseases. Frontiers in Immunol. 5(491): 1–12 (2014).

    CAS  Google Scholar 

  32. Hancock JT, Desikan R, Neill SJ. Role of reactive oxygen species in cell signaling pathways. Biochem Soc Trans. 29: 345–350 (2001).

    Article  CAS  Google Scholar 

  33. Kao SJ, Lei HC, Kuo CT, Chang MS, Chen BC, Chang YC, Chiu WT, Lin CH. Lipoteichoic acid induces nuclear factor-kappa B activation and nitric oxide synthase expression via phosphatidylinositol 3-kinase, Akt, and p38 MAPK in RAW 264.7 macrophages. Immunol. 115: 366–374 (2005).

  34. Murakami A, Ohigashi H. Targeting NOX, INOS and COX-2 in inflammatory cells: chemoprevention using food phytochemicals. Int J Cancer. 121: 2357–2363 (2007).

    Article  CAS  Google Scholar 

  35. Subbaramaiah K, Dannenberg AJ. Cyclooxygenase 2: a molecular target for cancer prevention and treatment. Trends Pharmacol Sci. 24: 96–102 (2003).

    Article  CAS  Google Scholar 

  36. Jung CH, Jung H, Shin YC, Park JH, Jun CY, Kim HM, Yim HS, Shin MG, Bae HS, Kim SH, Ko SG. Eleutherococcus senticosus extract attenuates LPS-induced iNOS expression through the inhibition of Akt and JNK pathways in murine macrophage. J Ethnopharmacol. 113: 183–187 (2007).

    Article  CAS  Google Scholar 

  37. Coskun M, Olsen J, Seidelin JB, Nielsen OH. MAP kinases in inflammatory bowel disease. Clinica Chimica Acta. 412: 513–520 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was a part of the project, the Development and Industrialization of Organism Defense Regulatory Materials from Extracts of Starfish Fermented with Cordyceps militaris, funded by the Ministry of Oceans and Fisheries, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pyo-Jam Park.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, YS., Shin, WB., Dong, X. et al. Anti-inflammatory effect of the extract from fermented Asterina pectinifera with Cordyceps militaris mycelia in LPS-induced RAW264.7 macrophages. Food Sci Biotechnol 26, 1633–1640 (2017). https://doi.org/10.1007/s10068-017-0233-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-017-0233-9

Keywords

Navigation