Log in

Impact of weathering on permeability-depth trends in bedrock aquifers

Impact de l’altération sur les couples perméabilité-profondeur dans les aquifères rocheux

Impacto de la meteorización sobre las tendencias de permeabilidad-profundidad en acuíferos de basamento rocoso

风化对基岩含水层渗透性-深度趋势的影响

Impacto do intemperismo nas tendências de permeabilidade-profundidade em aquíferos rochosos

  • Essay
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Weathering and compression are important processes that influence how permeability varies with depth below the Earth’s surface. Analysis of permeability measurements suggests that the rapid permeability decrease in shallow crystalline bedrock to a depth of ~200 m is primarily a function of weathering, and that compression causes a steady reduction in permeability with depth. The depth of the base of weathering increases with rock dissolution rate, and varies from ~20 m in shale to sometimes >1,000 m in carbonate rocks.

Résumé

L'altération et la compression sont des processus importants qui influencent la façon dont la perméabilité varie en fonction de la profondeur sous la surface de la Terre. L’analyse des mesures de perméabilité suggère que la diminution rapide de la perméabilité dans un substrat rocheux cristallin peu profond jusqu’à une profondeur d’environ 200 m est principalement liée à l’altération, et que la compression provoque une réduction constante de la perméabilité avec la profondeur. La profondeur de la partie inférieure de l’horizon d’altération augmente avec le taux de dissolution des roches, et varie d’environ 20 m dans les schistes à parfois plus de 1000m dans les roches carbonatées.

Resumen

La meteorización y la compactación son procesos importantes que influyen en la variación de la permeabilidad con la profundidad bajo la superficie terrestre. El análisis de las mediciones de permeabilidad sugiere que la rápida disminución de la permeabilidad en el basamento rocoso poco profundo hasta una profundidad de ~200 m es principalmente una función de la meteorización, y que la compactación provoca una reducción constante de la permeabilidad con la profundidad. La profundidad de la base de meteorización aumenta con la velocidad de disolución de la roca, y varía desde ~20 m en esquistos hasta a veces >1000 m en rocas carbonáticas.

摘要

风化和压缩是影响渗透性随地球地表深度变化的重要过程。渗透性测量分析表明,浅层结晶基岩中渗透性在约200 m深度内快速下降,主要是由于风化作用,而压缩则导致渗透性随深度逐渐减少。风化基底的深度随着岩石溶解速率的增加而增加,在页岩中约为20 m,而在碳酸盐岩中有时超过1000 m。

Resumo

O intemperismo e a compressão são processos importantes que influenciam a forma como a permeabilidade varia com a profundidade abaixo da superfície da Terra. A análise das medições de permeabilidade sugere que a rápida diminuição da permeabilidade em rochas cristalinas rasas até uma profundidade de ~200 m é principalmente uma função do intemperismo, e que a compressão causa uma redução constante na permeabilidade com a profundidade. A profundidade da base do intemperismo aumenta com a taxa de dissolução da rocha, e varia de ~20 m em xistos até às vezes >1000 m em rochas carbonáticas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Achtziger-Zupančič P, Loew S, Mariéthoz G (2017) A new global database to improve prediction of permeability distribution in crystalline rocks at site scale. J Geophys Res: Solid Earth 122:3513–3539

    Article  Google Scholar 

  • Anderson SP (2019) Breaking it down: mechanical processes in the weathering engine. Elements 15(4):247–252

    Article  CAS  Google Scholar 

  • Anderson RN, Zoback MD, Hickman SH, Newmark RL (1985) Permeability versus depth in the upper oceanic crust: in situ measurements in DSDP hole 504B, eastern equatorial Pacific. J Geophys Res: Solid Earth 90(B5):3659–3669

    Article  Google Scholar 

  • Anderson SP, Dietrich WE, Brimhall GH Jr (2002) Weathering profiles, mass-balance analysis, and rates of solute loss: linkages between weathering and erosion in a small, steep catchment. Geol Soc Amer Bull 114(9):1143–1158

    Article  CAS  Google Scholar 

  • Ascott MJ, Mansour MM, Bloomfield JP, Upton KA (2019) Analysis of the impact of hydraulic properties and climate change on estimations of borehole yields. J Hydrol 577:123998

    Article  Google Scholar 

  • Berner EK, Berner RA (2012) Global environment. Princeton University Press, Princeton, NJ

    Book  Google Scholar 

  • Berner RA, Morse JW (1974) Dissolution kinetics of calcium carbonate in sea water, IV: theory of calcite dissolution. Amer J Sci 274(2):108–134

    Article  CAS  Google Scholar 

  • Bianchi M, Palamakumbura RN, MacDonald AM, Macdonald DM (2023) Assessing regional variation in yield from weathered basement aquifers in West Africa and modelling their future groundwater development and sustainability. Hydrogeol J 31(2):257–274

    Article  Google Scholar 

  • Brantley SL, Holleran ME, ** L, Bazilevskaya E (2013) Probing deep weathering in the Shale Hills Critical Zone Observatory, Pennsylvania (USA): the hypothesis of nested chemical reaction fronts in the subsurface. Earth Surf Process Landf 38:1280–1298

    Article  CAS  Google Scholar 

  • Buckley DK (2000) Some case histories of geophysical downhole logging to examine borehole site and regional groundwater movement in Celtic regions. Geol Soc London Spec Publ 182:219–237

    Article  Google Scholar 

  • Burger P (2024) World deep caves. https://cave-exploring.com/index.php/long-and-deep-caves-of-the-world/world-deep-caves/. Accessed 18 Jan 2024

  • Burns ER, Williams CF, Ingebritsen SE, Voss CI, Spane FA, DeAngelo J (2015) Understanding heat and groundwater flow through continental flood basalt provinces: insights gained from alternative models of permeability/depth relationships for the Columbia Plateau, United States. Geofluids 15:120–138

    Article  Google Scholar 

  • Cardenas MB, Jiang XW (2010) Groundwater flow, transport, and residence times through topography‐driven basins with exponentially decreasing permeability and porosity. Water Resour Res 46(11). https://doi.org/10.1029/2010WR009370

  • Carter PG, Mills DAC (1976) Engineering geological investigations for the Kielder Tunnels. Q J Eng Geol Hydrogeol 9(2):125–141

    Article  Google Scholar 

  • Chandler RJ (1974) Lias clay: the long-term stability of cutting slopes. Géotechnique 24(1):21–38

    Article  Google Scholar 

  • Comte JC, Cassidy R, Nitsche J, Ofterdinger U, Pilatova K, Flynn R (2012) The typology of Irish hard-rock aquifers based on an integrated hydrogeological and geophysical approach. Hydrogeol J 20(8):1569–1588

    Google Scholar 

  • Davis SN, Turk LJ (1964) Optimum depth of wells in crystalline rocks. Ground Water 2(2):6–11

    Article  Google Scholar 

  • De Waele J, Gutiérrez F (2022) Karst hydrogeology, geomorphology and caves. Wiley, Chichester, NJ

    Book  Google Scholar 

  • Dewandel B, Lachassagne P, Wyns R, Maréchal JC, Krishnamurthy NS (2006) A generalized 3-D geological and hydrogeological conceptual model of granite aquifers controlled by single or multiphase weathering. J Hydrol 330(1–2):260–284

    Article  Google Scholar 

  • Dreybrodt W (1990) The role of dissolution kinetics in the development of karst aquifers in limestone: a model simulation of karst evolution. J Geol 98(5):639–655

    Article  Google Scholar 

  • Dutton SP, Diggs TN (1992) Evolution of porosity and permeability in the lower Cretaceous Travis Peak Formation, East Texas. AAPG Bull 76(2):252–269

    Google Scholar 

  • Einsele G, Sauter M, Clemens T, Boehme M, Poppe R (1995) Carbonate dissolution along fractures of sandstone aquifers: field observations and modelling. IAHS Publ. vol 225. IAHS, Wallingford, UK, pp 71–78

  • Ford DC, Williams PW (2007) Karst hydrogeology and geomorphology. Wiley, Chichester, NJ

    Book  Google Scholar 

  • Gleeson T, Smith L, Moosdorf N, Hartmann J, Dürr HH, Manning AH, van Beek LPH, Jellinek AM (2011) Map** permeability over the surface of the Earth. Geophys Res Lett 38(2):L02401

    Article  Google Scholar 

  • Green JA, Runkel AC, Alexander EC Jr (2012) Karst conduit flow in the Cambrian St. Lawrence Confining Unit, southeast Minnesota, USA. Carbon Evapor 27:167–172

    Article  Google Scholar 

  • Gu X, Rempe DM, Dietrich WE, West AJ, Lin TC, ** L, Brantley SL (2020) Chemical reactions, porosity, and microfracturing in shale during weathering: the effect of erosion rate. Geochim Cosmochim Acta 269:63–100

    Article  CAS  Google Scholar 

  • Hahm WJ, Rempe DM, Dralle DN, Dawson TE, Lovill SM, Bryk AB, Bish DL, Schieber J, Dietrich WE (2019) Lithologically controlled subsurface critical zone thickness and water storage capacity determine regional plant community composition. Water Resour Res 55(4):3028–3055

    Article  Google Scholar 

  • Hartmann J, Dürr HH, Moosdorf N, Meybeck M, Kempe S (2012) The geochemical composition of the terrestrial surface (without soils) and comparison with the upper continental crust. Int J Earth Sci 101:365–376

    Article  CAS  Google Scholar 

  • Holbrook WS, Marcon V, Bacon AR, Brantley SL, Carr BJ, Flinchum BA, Richter DD, Riebe CS (2019) Links between physical and chemical weathering inferred from a 65-m-deep borehole through Earth’s critical zone. Sci Rep 9:4495

    Article  Google Scholar 

  • Ingebritsen S, Gleeson T (2017) Crustal permeability. Hydrogeol J 25(8):2221–2224

    Article  Google Scholar 

  • Ingebritsen SE, Manning CE (2010) Permeability of the continental crust: dynamic variations inferred from seismicity and metamorphism. Geofluids 10(1–2):193–205

    Google Scholar 

  • Ingebritsen SE, Sanford WE, Neuzil C (2006) Groundwater in geologic processes. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  • Jackson TR, Fenelon JM (2022) Relation of hydraulic conductivity to depth, alteration, and rock type in the volcanic rocks of Pahute Mesa, Nevada, USA. Hydrogeol J 30(8):2417–2432

    Article  CAS  Google Scholar 

  • Jiang XW, Wan L, Wang XS, Ge S, Liu J (2009) Effect of exponential decay in hydraulic conductivity with depth on regional groundwater flow. Geophys Res Lett 36(24)

  • Jiang XW, Wang XS, Wan L (2010) Semi-empirical equations for the systematic decrease in permeability with depth in porous and fractured media. Hydrogeol J 18(4):839–850

    Article  Google Scholar 

  • Kaufmann G, Romanov D (2019) The initial phase of cave formation: aquifer-scale three-dimensional models with strong exchange flow. J Hydrol 572:528–542

    Article  CAS  Google Scholar 

  • Kuang X, Jiao JJ (2014) An integrated permeability-depth model for Earth’s crust. Geophys Res Lett 41(21):7539–7545

    Article  Google Scholar 

  • Lachassagne P, Wyns R, Dewandel B (2011) The fracture permeability of hard rock aquifers is due neither to tectonics, nor to unloading, but to weathering processes. Terra Nova 23(3):145–161

    Article  Google Scholar 

  • Lachassagne P, Aunay B, Frissant N, Guilbert M, Malard A (2014) High-resolution conceptual hydrogeological model of complex basaltic volcanic islands: a Mayotte, Comoros, case study. Terra Nova 26(4):307–321

    Article  Google Scholar 

  • Lachassagne P, Dewandel B, Wyns R (2021) Hydrogeology of weathered crystalline/hard-rock aquifers—guidelines for the operational survey and management of their groundwater resources. Hydrogeol J 29(8):2561–2594

    Article  Google Scholar 

  • LeGrand HF, Stringfield VT (1971) Development and distribution of permeability in carbonate aquifers. Water Resour Res 7(5):1284–1294

    Article  CAS  Google Scholar 

  • Liao R, Gu X, Brantley SL (2022) Weathering of chlorite from grain to watershed: the role and distribution of oxidation reactions in the subsurface. Geochim Cosmochim Acta 333:284–307

    Article  CAS  Google Scholar 

  • Liedl R, Sauter M, Hückinghaus D, Clemens T, Teutsch G (2003) Simulation of the development of karst aquifers using a coupled continuum pipe flow model. Water Resour Res 39(3):1057. https://doi.org/10.1029/2001WR001206

    Article  Google Scholar 

  • Louis C (1972) Rock hydraulics. In: Müller L (ed) Rock mechanics. Springer, Vienna, pp 299–387

    Chapter  Google Scholar 

  • Manning CE, Ingebritsen SE (1999) Permeability of the continental crust: implications of geothermal data and metamorphic systems. Rev Geophys 37(1):127–150

    Article  Google Scholar 

  • Medici G, West LJ, Mountney NP (2018) Characterization of a fluvial aquifer at a range of depths and scales: the Triassic St Bees Sandstone Formation, Cumbria, UK. Hydrogeol J 26(2):565–591

    Article  CAS  Google Scholar 

  • Medici G, West LJ, Mountney NP, Welch M (2019) Permeability of rock discontinuities and faults in the Triassic Sherwood Sandstone Group (UK): insights for management of fluvio-aeolian aquifers worldwide. Hydrogeol J 27(8):2835–55

    Article  CAS  Google Scholar 

  • Meinzer OE (1923) The occurrence of ground water in the United States. US Geol Surv Water Suppl Pap, pp 489. https://doi.org/10.3133/wsp489

  • Palmer AN (1991) Origin and morphology of limestone caves. Geol Soc Am Bull 103(1):1–21

    Article  Google Scholar 

  • Parker BL, Chapman SW, Goldstein KJ, Cherry JA (2019) Multiple lines of field evidence to inform fracture network connectivity at a shale site contaminated with dense non-aqueous phase liquids. Geol Soc Lond Spec Publ 479:101–127

    Article  Google Scholar 

  • Pedrazas MA, Hahm WJ, Huang MH, Dralle D, Nelson MD, Breunig RE, Fauria KE, Bryk AB, Dietrich WE, Rempe DM (2021) The relationship between topography, bedrock weathering, and water storage across a sequence of ridges and valleys. J Geophys Res: Earth Surf 126(4):2020JF005848

    Article  Google Scholar 

  • Pradhan RM, Singh A, Ojha AK, Biswal TK (2022) Structural controls on bedrock weathering in crystalline basement terranes and its implications on groundwater resources. Sci Rep 12:11815

    Article  CAS  Google Scholar 

  • Ranjram M, Gleeson T, Luijendijk E (2015) Is the permeability of crystalline rock in the shallow crust related to depth, lithology or tectonic setting? Geofluids 15:106–119

    Article  Google Scholar 

  • Romanov D, Gabrovsek F, Dreybrodt W (2003) The impact of hydrochemical boundary conditions on the evolution of limestone karst aquifers. J Hydrol 276:240–253

    Article  CAS  Google Scholar 

  • Runkel AC, Tip** RG, Steenberg JR, Retzler AJ, Meyer JR, Parker BL, Green JA, Barry JD, Jones PM (2018) A multidisciplinary-based conceptual model of a fractured sedimentary bedrock aquitard: improved prediction of aquitard integrity. Hydrogeol J 26(7):2133–2159

    Article  Google Scholar 

  • Rushton KR, Chan YK (1976) Pum** test analysis when parameters vary with depth. Ground Water 14(2):82–87

    Article  Google Scholar 

  • Rushton KR, Connorton BJ, Tomlinson LM (1989) Estimation of the groundwater resources of the Berkshire Downs supported by mathematical modeling. Q J Eng Geol Hydrogeol 22(4):329–41

    Article  Google Scholar 

  • Saar MO, Manga M (2004) Depth dependence of permeability in the Oregon Cascades inferred from hydrogeologic, thermal, seismic, and magmatic modeling constraints. J Geophys Res: Solid Earth 109(B4). https://doi.org/10.1029/2003JB002855

  • Shand P, Edmunds WM, Lawrence AR, Smedley PL, Burke S (2007) The natural (baseline) quality of groundwater in England and Wales. British Geol Surv Res Rep RR/07/06, BGS, Keyworth, UK

  • Sharp JM, Green RT, Schindel GM (2019) The Edwards Aquifer: the past, present and future of a vital water resource. Geol Soc Am Mem 215. https://doi.org/10.1130/MEM215

  • Shube H, Kebede S (2024) Variation in hydraulic structure with respect to depth and age of a large igneous province in Ethiopia. Hydrogeol J 32(1):97–108

    Article  Google Scholar 

  • Toccalino PL, Norman JE, Hitt KJ (2010) Quality of source water from public-supply wells in the United States, 1993-2007. US Geol Surv Sci Invest Rep 2010-5024

  • Tuttle MLW, Breit GN (2009) Weathering of the New Albany Shale, Kentucky, USA: I. weathering zones defined by mineralogy and major-element composition. Appl Geochem 24:1549–1564

    Article  CAS  Google Scholar 

  • Tye AM, Lawley RL, Ellis MA, Rawlins BG (2011) The spatial variation of weathering and soil depth across a Triassic sandstone outcrop. Earth Surf Process Landf 36(5):569–581

    Article  Google Scholar 

  • White AF, Brantley SL (2003) The effect of time on the weathering of silicate minerals: why do weathering rates differ in the laboratory and field? Chem Geol 202(3–4):479–506

    Article  CAS  Google Scholar 

  • Williams CF, Narasimhan TN (1989) Hydrogeologic constraints on heat flow along the San Andreas Fault: a testing of hypotheses. Earth Planet Sci Lett 92(2):131–143

    Article  CAS  Google Scholar 

  • Williams PW (1983) The role of the subcutaneous zone in karst hydrology. J Hydrol 61:45–67

    Article  Google Scholar 

  • Worthington SRH (2001) Depth of conduit flow in unconfined carbonate aquifers. Geology 29(4):335–338

    Article  CAS  Google Scholar 

  • Worthington SRH (2009) Diagnostic hydrogeologic characteristics of a karst aquifer (Kentucky, USA). Hydrogeol J 17(7):1665–1678

    Article  CAS  Google Scholar 

  • Worthington SRH (2021) Factors affecting the variation of permeability with depth in carbonate aquifers. Hydrogeol J 29(1):21–32

    Article  Google Scholar 

  • Worthington SRH (2023) Examining the assumptions of the single-porosity archetype for transport in bedrock aquifers. Hydrogeol J 31(1):87–96

    Article  Google Scholar 

  • Worthington SRH, Foley AE (2023) Development of spatial permeability variations in English Chalk aquifers. Geol Soc Lond Spec Publ 517:63–74

    Article  Google Scholar 

  • Worthington SRH, Ford DC (2009) Self-organized permeability in carbonate aquifers. Ground Water 47(3):326–336

    Article  CAS  Google Scholar 

  • Worthington SRH, Smart CC, Ruland W (2012) Effective porosity of a carbonate aquifer with bacterial contamination: Walkerton, Ontario, Canada. J Hydrol 464:517–527

    Article  Google Scholar 

  • Worthington SRH, Davies GJ, Alexander EC Jr (2016) Enhancement of bedrock permeability by weathering. Earth-Sci Rev 160:188–202

    Article  CAS  Google Scholar 

  • Wray RA, Sauro F (2017) An updated global review of solutional weathering processes and forms in quartz sandstones and quartzites. Earth-Sci Rev 171:520–557

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Thanks go to reviewers Patrick Lachassagne and Jean-Christophe Comte for their perceptive comments on the manuscript. The author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen R. H. Worthington.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Worthington, S.R.H. Impact of weathering on permeability-depth trends in bedrock aquifers. Hydrogeol J (2024). https://doi.org/10.1007/s10040-024-02803-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10040-024-02803-0

Keywords

Navigation