Log in

Investigating the rheology of fluidized and non-fluidized gas-particle beds: implications for the dynamics of geophysical flows and substrate entrainment

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

A Correction to this article was published on 29 April 2022

This article has been updated

Abstract

Natural geophysical mass flows are among the most complex granular systems and their dynamics are often modified by the presence of an interstitial fluid. Prediction of their runout requires the development of models estimating the solid stresses in these hazardous currents wherein excess pore-fluid pressure can develop. We use discrete element modelling (DEM-CFD) with a Coarse-Graining post-processing technique (CG) to investigate the rheology of unsteady gas-particle fluidized to non-fluidized granular beds placed on horizontal and inclined planes. Similar to fluidized beds immersed in viscous fluids, the effective friction coefficient of air-fluidized beds can be defined as a function of the classic μ(I)-rheology and the non-dimensional fluid or solid pressure to explain the failure and dynamics of granular flows with excess pore pressure on inclines. However, dilation imposed by fluid drag and particle collisions in gas-particle fluidized beds can drastically change its effective frictional properties. In contrast with the common assumption in water-particle flows that granular temperature is negligible, in our gas-particle simulations, the contribution of the velocity fluctuations to the stress tensor is significant. Hence, the shear stress is found to be non-zero even when the flow is fully fluidized in the inertial regime. These results suggest the need to better understand velocity fluctuations to predict the effective viscosity of sheared fluidized mixtures and are relevant for many applications. Notably, a unified approach is useful for many geophysical flows that encompass a range of fluidization conditions in a single flow such as pyroclastic density currents and snow avalanches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Change history

References

  1. Andreotti, B., Forterre, Y., Pouliquen, O.: Granular media: between fluid and solid. Cambridge, New York (2013)

  2. Aranson, I.S., Tsimring, L.S.: Continuum theory of partially fluidized granular flows. Phys. Rev. E 65(6), 061303 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  3. Babic, M.: Average balance equations for granular materials. Int. J. Eng. Sci. 35(5), 523–548 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barker, T., Schaeffer, D.G., Shearer, M., Gray, J.M.N.T.: Well-posed continuum equations for granular flow with compressibility and μ(I)-rheology. Proc. R. Soc. A, (2017). https://doi.org/10.1098/rspa.2016.0846

    Article  MATH  Google Scholar 

  5. Bergantz, G.W., Schleicher, J.M., Burgisser, A.: On the kinematics and dynamics of crystal-rich systems. J. Geophys. Res. Solid Earth 122(8), 6131–6159 (2017)

    Article  ADS  Google Scholar 

  6. Beverloo, W.A., Leniger, H.A., van de Velde, J.: The flow of granular solids through orifices. Chem. Eng. Sc. 15(3–4), 260–269 (1961)

    Article  Google Scholar 

  7. Biot, M.A.: Mechanics of deformation and acoustic propagation in porous media. J. Appl. Phys. 33(4), 1482–1498 (1962)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Bouchut, F., Fernández-Nieto, E.D., Mangeney, A., Narbona-Reina, G.: A two-phase two-layer model for fluidized granular flows with dilatancy effects. J. Fluid. Mech. 801, 166–221 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Boyer, F., Guazzelli, É., Pouliquen, O.: Unifying suspension and granular rheology. Phys. Rev. Lett. 107(18), 188301 (2011)

    Article  ADS  Google Scholar 

  10. Branney, M., Kokelaar, P.: Pyroclastic density currents and the sedimentation of ignimbrites, p. 143. Geological Society Publishing House, Bath, United Kingdom (2002)

    Google Scholar 

  11. Breard, E.C.P., Dufek, J., Fullard, L., Carrara, A. (2020). The basal friction coefficient of granular flows with and without excess pore pressure: implications for pyroclastic density currents, water-rich debris flows, and rock and submarine avalanches. J. Geophys. Res. Solid Earth 125(12), e2020JB020203

  12. Breard, E.C.P., Dufek, J., Lube, G.: Enhanced mobility in concentrated pyroclastic density currents: an examination of a self-fluidization mechanism. Geophys. R. Lett. 45, 654–664 (2017)

    Article  ADS  Google Scholar 

  13. Breard, E.C.P., Dufek, J., Roche, O.: Continuum modeling of pressure-balanced and fluidized granular flows in 2-D: comparison with glass bead experiments and implications for concentrated pyroclastic density currents. J. Geophys. Res. Solid Earth 124(6), 5557–5583 (2019)

    Article  ADS  Google Scholar 

  14. Breard, E.C.P., Jones, J.R., Fullard, L., Lube, G., Davies, C., Dufek, J.: The permeability of volcanic mixtures—implications for pyroclastic currents. J. Geophys. Res. Solid Earth 124(2), 1343–1360 (2019)

    Article  ADS  Google Scholar 

  15. Brown, M.C.: Nuees ardentes and fluidization. Am. J. Sci. 260(6), 467–470 (1962)

    Article  ADS  Google Scholar 

  16. Calder, E.S., Sparks, R.S.J., Gardeweg, M.C.: Erosion, transport and segregation of pumice and lithic clasts in pyroclastic flows inferred from ignimbrite at Lascar Volcano, Chile. J. Volcanol. Geotherm. Res. 104(1–4), 201–235 (2000)

    Article  ADS  Google Scholar 

  17. Capra, L., Manea, V.C., Manea, M., Norini, G.: The importance of digital elevation model resolution on granular flow simulations; a test case for Colima Volcano using TITAN2D computational routine. Nat. Hazards 59(2), 665–680 (2011)

    Article  Google Scholar 

  18. Carrara, A., Burgisser, A., Bergantz, G.W.: Lubrication effects on magmatic mush dynamics. J. Volcanol. Geotherm. Res. 380, 19–30 (2019)

    Article  ADS  Google Scholar 

  19. Charbonnier, S.J., Germa, A., Connor, C.B., Gertisser, R., Preece, K., Komorowski, J.-C., Lavigne, F., Dixon, T., Connor, L.: Evaluation of the impact of the 2010 pyroclastic density currents at Merapi Volcano from high-resolution satellite imagery, field investigations and numerical simulations. J. Volcanol. Geotherm. Res. 261, 295–315 (2013)

    Article  ADS  Google Scholar 

  20. Charbonnier, S.J., Gertisser, R.: Numerical simulations of block-and-ash flows using the Titan2D flow model; examples from the 2006 eruption of Merapi Volcano, Java, Indonesia. Bull. Volcanol. 71(8), 953–959 (2009)

    Article  ADS  Google Scholar 

  21. Chen, J.C., Grace, J.R., Golriz, M.R.: Heat transfer in fluidized beds: design methods. Powder Technol. 150(2), 123–132 (2005)

    Article  Google Scholar 

  22. Chialvo, S., Sun, J., Sundaresan, S.: Bridging the rheology of granular flows in three regimes. Phys. Rev. E 85(2), 021305 (2012)

    Article  ADS  Google Scholar 

  23. Chialvo, S., Sundaresan, S.: A modified kinetic theory for frictional granular flows in dense and dilute regimes. Phys. Fluid 25(7), 070603 (2013)

    Article  ADS  Google Scholar 

  24. Cleary, P.W., Sawley, M.L.: DEM modelling of industrial granular flows: 3D case studies and the effect of particle shape on hopper discharge. Appl. Math. Model. 26(2), 89–111 (2002)

    Article  MATH  Google Scholar 

  25. Coulomb, C.A.: Theorie des machines simples. Acad. Sci. 166(10) (1781)

  26. da Cruz, F., Emam, S., Prochnow, M., Roux, J.-N., Chevoir, F.: Rheophysics of dense granular materials: discrete simulation of plane shear flows. Phys. Rev. E (72):021309 (2005)

  27. de’ Michieli Vitturi, M., Esposti Ongaro, T., Lari, G., Aravena, A.: IMEX_SfloW2D 1.0: a depth-averaged numerical flow model for pyroclastic avalanches Geosci. Model Dev. 12(1), 581 595 (2019)

  28. Druitt, T.H., Avard, G., Bruni, G., Lettieri, P., Maez, F.: Gas retention in fine-grained pyroclastic flow materials at high temperatures. Bull. Volcanol. 69(8), 881–901 (2007)

    Article  ADS  Google Scholar 

  29. Druitt, T.H., Bruni, G., Lettieri, P., Yates, J.G.: The fluidization behaviour of ignimbrite at high temperature and with mechanical agitation. Geophys. R. Lett. 31(2) (2004)

  30. Druitt, T.H., Calder, E.S., Cole, P.D., Hoblitt, R.P., Loughlin, S.C., Norton, G.E., Ritchie, L.J., Sparks, R.S.J., Voight, B.: Small-volume, highly mobile pyroclastic flows formed by rapid sedimentation from pyroclastic surges at Soufriere Hills Volcano, Montserrat; an important volcanic hazard. Mem. Geol. Soc. Lond. 21, 263–279 (2002)

    Article  Google Scholar 

  31. Edwards, A.N., Gray, J.M.N.T.: Erosion–deposition waves in shallow granular free-surface flows. J. Fluid. Mech. 762, 35–67 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  32. Einstein, A.: Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann. Phys. 322(8), 549–560 (1905)

    Article  MATH  Google Scholar 

  33. Fall, A., Ovarlez, G., Hautemayou, D., Mézière, C., Roux, J.N., Chevoir, F.: Dry granular flows: rheological measurements of the μ(I)-rheology. J. Rheol. 59(4), 1065–1080 (2015)

    Article  ADS  Google Scholar 

  34. Forterre, Y., Pouliquen, O.: Flows of dense granular media. Annu. Rev. Fluid Mech. 40(1), 1–24 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Freundt, A.: The formation of high-grade ignimbrites, I: experiments on high- and low-concentration transport systems containing sticky particles. Bull. Volcanol. 59(6), 414–435 (1998)

    Article  ADS  Google Scholar 

  36. Fullard, L., Breard, E., Davies, C., Lagrée, P.-Y., Popinet, S., Lube, G.: Testing the μ(I) granular rheology against experimental silo data. EPJ Web Conf. 140, 11002 (2017)

    Article  Google Scholar 

  37. Gallier, S., Lemaire, E., Peters, F., Lobry, L.: Rheology of sheared suspensions of rough frictional particles. J. Fluid. Mech. 757, 514–549 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Garg, R., Galvin, J., Li, T., Pannala, S.: Open-source MFIX-DEM software for gas–solids flows: part I—verification studies. Powder Technol. 220, 122–137 (2012)

    Article  Google Scholar 

  39. Gauer, P., Issler, D.: Possible erosion mechanisms in snow avalanches. Ann. Glaciol. 38, 384–392 (2017)

    Article  ADS  Google Scholar 

  40. MiDi, G.D.R.: Eur. Phys. J. E 14, 341 (2004)

  41. Geldart, D.: Types of gas fluidization. Powder Technol. 7(5), 285–292 (1973)

    Article  Google Scholar 

  42. Gibilaro, L.G., Gallucci, K., Di Felice, R., Pagliai, P.: On the apparent viscosity of a fluidized bed. Chem. Eng. Sc. 62(1–2), 294–300 (2007)

    Article  Google Scholar 

  43. Girolami, L., Druitt, T.H., Roche, O.: Dynamics of laboratory ash flows. International Union of Geodesy and Geophysics General Assembly = Union Geodesique et Geophysique Internationale Comptes Rendus de la ...Assemblee Generale 24 (2007)

  44. Grace, J.R.: The viscosity of fluidized beds. Can. J. Chem. Eng. 48(1), 30–33 (1970)

    Article  Google Scholar 

  45. Grace, J.R.: Agricola aground: characterization and interpretation of fluidization phenomena. AIChE Symp. Ser. 289(88), 1–16 (1992)

    Google Scholar 

  46. Gu, Y., Ozel, A., Sundaresan, S.: Rheology of granular materials with size distributions across dense-flow regimes. Powder Technol. 295(Supplement C), 322–329 (2016)

    Article  Google Scholar 

  47. Gueugneau, V., Kelfoun, K., Charbonnier, S., Germa, A., Carazzo, G.: Dynamics and impacts of the May 8th, 1902 pyroclastic current at Mount Pelée (Martinique): new insights from numerical modeling. Front. Earth Sci. 8(279) (2020)

  48. Gueugneau, V., Kelfoun, K., Roche, O., Chupin, L.: Effects of pore pressure in pyroclastic flows: numerical simulation and experimental validation. Geophys. R. Lett. 44(5), 2194–2202 (2017)

    Article  ADS  Google Scholar 

  49. Guo, N., Zhao, J.: The signature of shear-induced anisotropy in granular media. Comput. Geotech. 47, 1–15 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  50. Hartkamp, R., Ghosh, A., Weinhart, T., Luding, S.: A study of the anisotropy of stress in a fluid confined in a nanochannel. J. Chem. Phys. 137(4), 044711 (2012)

    Article  ADS  Google Scholar 

  51. Henann, D.L., Kamrin, K.: A predictive, size-dependent continuum model for dense granular flows. Proc. Natl Acad. Sci. 110(17), 6730 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. Holyoake, A.J., McElwaine, J.N.: High-speed granular chute flows. J. Fluid. Mech. 710, 35–71 (2012)

    Article  ADS  MATH  Google Scholar 

  53. Hutter, K.: Geophysical granular and particle-laden flows: review of the field Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 363, 1832–1497 (2005)

  54. Iverson, R.H.: The physics of debris flows. Rev. Geophys. 35(3), 245–296 (1997)

    Article  ADS  Google Scholar 

  55. Iverson, R.M.: Regulation of landslide motion by dilatancy and pore pressure feedback. J. Geophys. Res. Earth Surf. 110(F2) (2005)

  56. Iverson, R.M., George, D.L.: A depth-averaged debris-flow model that includes the effects of evolving dilatancy. I. Physical basis. Proc. R. Soc. A Math. Phys. Eng. Sc. 470(2170), 20130819 (2014)

  57. Iverson, R.M., Lahusen, R.G.: Dynamic pore-pressure fluctuations in rapidly shearing granular materials. Science 246(4831) (1989)

  58. Iverson, R.M., Logan, M., LaHusen, R.G., Berti, M.: The perfect debris flow? Aggregated results from 28 large-scale experiments. J. Geophys. Res. Earth Surf. 115(F3) (2010)

  59. Iverson, R.M., Reid, M.E., LaHusen, R.G.: Debris-flow mobilization from landslides. Annu. Rev. Earth Planet. Sci. 25(1), 85–138 (1997)

    Article  ADS  Google Scholar 

  60. Iverson, R.M., Reid, M.E., Logan, M., LaHusen, R.G., Godt, J.W., Griswold, J.P.: Positive feedback and momentum growth during debris-flow entrainment of wet bed sediment. Nat. Geosci. 4, 116 (2010)

    Article  ADS  Google Scholar 

  61. Iverson, R.M., Vallance, J.W.: New views of granular mass flows. Geology 29(2), 115–118 (2001)

    Article  ADS  Google Scholar 

  62. Jaeger, H.M., Nagel, S.R.: Physics of the granular state. Science 255(5051), 1523 (1992)

    Article  ADS  Google Scholar 

  63. Janda, A., Zuriguel, I., Garcimartín, A., Maza, D.: Clogging of granular materials in narrow vertical pipes discharged at constant velocity. Granular Matter 17(5), 545–551 (2015)

    Article  Google Scholar 

  64. Jessop, D.E., Hogg, A.J., Gilbertson, M.A., Schoof, C.: Steady and unsteady fluidised granular flows down slopes. J. Fluid. Mech. 827, 67–120 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  65. Jop, P., Forterre, Y., Pouliquen, O.: Crucial role of sidewalls in granular surface flows: consequences for the rheology. J. Fluid. Mech. 541, 167–192 (2005)

    Article  ADS  MATH  Google Scholar 

  66. Jop, P., Forterre, Y., Pouliquen, O.: A constitutive law for dense granular flows. Nature 441, 727–730 (2006)

    Article  ADS  Google Scholar 

  67. Kamrin, K., Henann, D.L.: Nonlocal modeling of granular flows down inclines. Soft Matter 11, 179–185 (2015)

    Article  ADS  Google Scholar 

  68. Kamrin, K., Koval, G.: Nonlocal constitutive relation for steady granular flow. Phys. Rev. Lett. 108(17), 178301 (2012)

    Article  ADS  Google Scholar 

  69. Kelfoun, K.: Suitability of simple rheological laws for the numerical simulation of dense pyroclastic flows and long-runout volcanic avalanches. J. Geophys. Res. 116(B8) (2011)

  70. Kelfoun, K.: A two-layer depth-averaged model for both the dilute and the concentrated parts of pyroclastic currents. J. Geophys. Res. Solid Earth 122(6), 4293–4311 (2017)

    Article  ADS  Google Scholar 

  71. Kim, S., Kamrin, K.: Power-law scaling in granular rheology across flow geometries. Phys. Rev. Lett. 125(8), 088002 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  72. King, D.F., Mitchell, F.R.G., Harrison, D.: Dense phase viscosities of fluidised beds at elevated pressures. Powder Technol. 28(1), 55–58 (1981)

    Article  Google Scholar 

  73. Krieger, I.M., Dougherty, T.J.: A mechanism for Non-Newtonian flow in suspensions of rigid spheres. Trans. Soc. Rheol. 3(1), 137–152 (1959)

    Article  MATH  Google Scholar 

  74. Kunii, D., Levespiel, O.: Fluidization engineering, 2nd edn. Butterworth-Heinemann (1991)

    Google Scholar 

  75. Langston, P.A., Tüzün, U., Heyes, D.M.: Discrete element simulation of granular flow in 2D and 3D hoppers: dependence of discharge rate and wall stress on particle interactions. Chem. Eng. Sci. 50(6), 967–987 (1995)

    Article  Google Scholar 

  76. Li, T., Garg, R., Galvin, J., Pannala, S.: Open-source MFIX-DEM software for gas-solids flows: part II—validation studies. Powder Technol 220(Supplement C), 138–150 (2012)

    Article  Google Scholar 

  77. Lube, G., Breard, E.C.P., Esposti-Ongaro, T., Dufek, J., Brand, B.: Multiphase flow behaviour and hazard prediction of pyroclastic density currents. Nat. Rev. Earth Environ. 1(7), 348–365 (2020)

    Article  ADS  Google Scholar 

  78. Lube, G., Breard, E.C.P., Jones, J., Fullard, L., Dufek, J., Cronin, S.J., Wang, T.: Generation of air lubrication within pyroclastic density currents. Nat. Geosci. 12(5), 381–386 (2019)

    Article  ADS  Google Scholar 

  79. Lucas, A., Mangeney, A., Ampuero, J.P.: Frictional velocity-weakening in landslides on Earth and on other planetary bodies. Nat. Commun. 5(1), 3417 (2014)

    Article  ADS  Google Scholar 

  80. Lun, C.K.K., Savage, S.B., Jeffrey, D.J., Chepurniy, N.: Kinetic theories for granular flow: inelastic particles in Couette flow and slightly inelastic particles in a general flowfield. J. Fluid. Mech. 140, 223–256 (1984)

    Article  ADS  MATH  Google Scholar 

  81. Marzougui, D., Chareyre, B., Chauchat, J.: Microscopic origins of shear stress in dense fluid–grain mixtures. Granular Matter 17(3), 297–309 (2015)

    Article  Google Scholar 

  82. Mickley, H.S., Fairbanks, D.F.: Mechanism of heat transfer to fluidized beds. AIChE J. 1(3), 374–384 (1955)

    Article  Google Scholar 

  83. Montserrat, S., Tamburrino, A., Roche, O., Niño, Y.: Pore fluid pressure diffusion in defluidizing granular columns. J. Geophys. Res. Earth Surf. 117(F2) (2012)

  84. Musser, J., Vaidheeswaran, A., Clarke, M.A.: MFIX Documentation volume 3: verification and validation manual; 3rd (ed.). NETL-PUB-22050; NETL Technical Report Series; U.S. Department of Energy, National Energy Technology Laboratory: Morgantown, WV (2021)

  85. Ness, C., Sun, J.: Flow regime transitions in dense non-Brownian suspensions: Rheology, microstructural characterization, and constitutive modeling. Phys. Rev. E 91(1), 012201 (2015)

    Article  ADS  Google Scholar 

  86. Ogburn, S.E., Calder, E.S.: The relative effectiveness of empirical and physical models for simulating the dense undercurrent of pyroclastic flows under different emplacement conditions. Front. Earth Sci. 5(83) (2017)

  87. Pailha, M., Nicolas, M., Pouliquen, O.: Initiation of underwater granular avalanches: Influence of the initial volume fraction. Phys. Fluid 20(11), 111701 (2008)

    Article  ADS  MATH  Google Scholar 

  88. Pouliquen, O., Vallance, J.W.: Segregation induced instabilities of granular fronts. Chaos 3(9), 621–630 (1999)

    Article  ADS  MATH  Google Scholar 

  89. Queteschiner, D., Lichtenegger, T., Schneiderbauer, S., Pirker, S.: Adaptive coarse-graining for large-scale DEM simulations. In: 12th International Conference on CFD in Oil & Gas, Metallurgical and Process Industries. Norway (2017)

  90. Rees, A.C., Davidson, J.F., Dennis, J.S., Hayhurst, A.N.: The rise of a buoyant sphere in a gas-fluidized bed. Chem. Eng. Sci. 60(4), 1143–1153 (2005)

    Article  Google Scholar 

  91. Reynolds, O.: On the dilatancy of media composed of rigid particles in contact. Philos. Mag. Ser. 5(20), 469 (1885)

    Article  Google Scholar 

  92. Roche, O.: Depositional processes and gas pore pressure in pyroclastic flows: an experimental perspective. Bull. Volcanol. 74(8), 1807–1820 (2012)

    Article  ADS  Google Scholar 

  93. Roche, O., Buesch, D.C., Valentine, G.A.: Slow-moving and far-travelled dense pyroclastic flows during the Peach Spring super-eruption. Nat. Commun. 7 (2016)

  94. Roche, O., Gilbertson, M.A., Phillips, J.C., Sparks, R.S.J.: Inviscid behaviour of fines-rich pyroclastic flows inferred from experiments on gas–particle mixtures. Earth Planet. Sci. Lett. 240(2), 401–414 (2005)

    Article  ADS  Google Scholar 

  95. Roche, O., Nino, Y., Mangeney, A., Brand, B., Pollock, N., Valentine, G.A.: Dynamic pore-pressure variations induce substrate erosion by pyroclastic flows. Geology 41(10), 1107–1110 (2013)

    Article  ADS  Google Scholar 

  96. Roux, R., Radjai, F.: Physics of dry granular media. Springer, pp. 229–236 (1998)

  97. Rubio-Largo, S.M., Janda, A., Maza, D., Zuriguel, I., Hidalgo, R.C.: Disentangling the free-fall arch paradox in silo discharge. Phys. Rev. Lett. (2015)

  98. Schoefield, A., Wroth, P.: Critical state soil mechanics. McGraw-Hill (1968)

    Google Scholar 

  99. Smith, G.M., Williams, R., Rowley, P.J., Parsons, D.R.: Investigation of variable aeration of monodisperse mixtures: implications for pyroclastic density currents. Bull. Volcanol. 80(8), 67 (2018)

    Article  ADS  Google Scholar 

  100. Sparks, R.S.J.: Grain size variations in ignimbrites and implications for the transport of pyroclastic flows. Sedimentology 23(2), 147–188 (1976)

    Article  ADS  Google Scholar 

  101. Stickel, J.J., Powell, R.L.: FLUID MECHANICS AND RHEOLOGY OF DENSE SUSPENSIONS. Annu. Rev. Fluid Mech. 37(1), 129–149 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  102. Sutherland, W.: The viscosity of gases and molecular force. Philos. Mag. 36, 507–531 (1893)

    Article  MATH  Google Scholar 

  103. Terzaghi, K.: The shearing resistance of saturated soils and the angle between the planes of shear. In: Proceedings of the first international conference on soil mechanics and foundation engineering, D-7 (1936)

  104. Thornton, A., Weinhart, T., Luding, S., Bokhove, O.: Modeling of the particle size segregation: calibration using the discrete particle method. Int. J. Mod. Phys. C 23(08), 1240014 (2012)

    Article  ADS  Google Scholar 

  105. Weinhart, T., Hartkamp, R., Thornton, A.R., Luding, S.: Coarse-grained local and objective continuum description of three-dimensional granular flows down an inclined surface. Phys. Fluid 25(7), 070605 (2013)

    Article  ADS  Google Scholar 

  106. Weinhart, T., Labra, C., Luding, S., Ooi, J.Y.: Influence of coarse-graining parameters on the analysis of DEM simulations of silo flow. Powder Technol. 293, 138–148 (2016)

    Article  Google Scholar 

  107. Weinhart, T., Thornton, A.R., Luding, S., Bokhove, O.: Closure relations for shallow granular flows from particle simulations. Granular Matter 14(4), 531–552 (2012)

    Article  Google Scholar 

  108. Wilson, C.J.N.: The role of fluidization in the emplacement of pyroclastic flows: an experimental approach. J. Volcanol. Geotherm. Res. 8, 231–249 (1980)

    Article  ADS  Google Scholar 

  109. Wilson, C.J.N.: The role of fluidization in the emplacement of pyroclastic flows, 2: experimental results and their interpretation. J. Volcanol. Geotherm. Res. 20(1), 55–84 (1984)

    Article  ADS  Google Scholar 

  110. Wood, D.M.: Soil behaviour and critical state soil mechanics. Cambridge University Press (1990)

    MATH  Google Scholar 

  111. Wood, D.M.: Introduction: models and soil mechanics. In: Wood, D.M. (ed.) Soil behaviour and critical state soil mechanics, pp. 1–36. Cambridge University Press, Cambridge (1991)

    Chapter  Google Scholar 

  112. Yang, M., Taiebat, M., Mutabaruka, P., Radjaï, F.: Evolution of granular materials under isochoric cyclic simple shearing. Phys. Rev. E 103(3), 032904 (2021)

    Article  ADS  Google Scholar 

  113. Zhang, Q., Kamrin, K.: Microscopic description of the granular fluidity field in nonlocal flow modeling. Phys. Rev. Lett. 118(5), 058001 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Financial support was provided by the National Science Foundation (EAR 1852569 and EAR 1650382) and MCIU/AEI/FEDER, UE (Grant No. PGC2018 336 097842-B-I00). The research of LF was supported by the Royal Society of New Zealand (MAU1712). The research of MT was supported by La Caixa. The data supporting the conclusions are shown in the figures and tables presented. Interested readers will find additional data in the supporting information. On request the authors can also provide more specific results obtained from the experimental and numerical studies used to produce the figures.

ECPB thanks F. Bouchut and M. Yang for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric C. P. Breard.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Code availability

The code used to produce the CFD is publicly available at https://mfix.netl.doe.gov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised due to change in given and family names of all authors.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 400 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Breard, E.C.P., Fullard, L., Dufek, J. et al. Investigating the rheology of fluidized and non-fluidized gas-particle beds: implications for the dynamics of geophysical flows and substrate entrainment. Granular Matter 24, 34 (2022). https://doi.org/10.1007/s10035-021-01192-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-021-01192-5

Keywords

Navigation