Log in

Numerical analysis of the influence of the near ground turbulence on the wind-sand flow under the natural wind

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

The near-ground turbulent flow of nature air should have an important influence on the wind-sand flow, because of the vegetation and/or micro-topography. However, due to the complexity of turbulent flows, the effects of such turbulences and dust particles are still unknown. In this paper, the large eddy simulation–discrete element method was used to simulate the wind-sand flow. The results show that the response time of the wind-sand flow to turbulence is approximately 1.6 s. In addition, the response time increases rapidly as the particle size increases. The turbulence impact on the sand transport rate first increases and then decreases as the wind velocity fluctuation intensity increases. The sand transport rate is enhanced when the turbulence intensity is less than 0.25, whereas it is weakened when the turbulence intensity exceeds 0.25. Furthermore, the smaller the particle size, the more significant the effect. The effect of turbulence is mainly concentrated at 0.1–0.2 m from the ground and the turbulence increases the height of the wind-sand flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig.11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The datasets used or analysed during the current study are available from the corresponding author on reasonable request.

Code availability

The program code used is not attached to the manuscript, and if the reader requests it, the author is willing to provide it.

References

  1. Bagnold, R. A.: The Physics of Blown Sand and Desert Dune. Methuen, London (1941)

    Google Scholar 

  2. Wang, Z.T., Zhang, C.L., Wang, H.T.: Intermittency of aeolian saltation. Eur. Phys. J. E 37, 126 (2014)

    Google Scholar 

  3. Wyngaard, J.C.: Atmospheric turbulence. Annu. Rev. Fluid Mech. 24, 205–234 (1992)

    ADS  MATH  Google Scholar 

  4. Stout, J.E., Zobeck, T.M.: Intermittent saltation. Sedimentology 44, 959–972 (1997)

    ADS  Google Scholar 

  5. Sherman, D.J., Li, B.L., Ellis, J.T., Swann, C.: Intermittent aeolian saltation: a protocal for quantification. Geogr. Rev. 108(2), 296–314 (2018)

    Google Scholar 

  6. Wang, P., Zheng, X.J.: Saltation transport rate in unsteady wind variations. Eur. Phys. J. E 37, 40 (2014)

    Google Scholar 

  7. Jackson, D.W.T.: Potential inertial effects in aeolian sand transport: preliminary results. Sediment. Geol. 106, 193–201 (1996)

    ADS  Google Scholar 

  8. Rasmussen, K.R., Sørensen, M.: Aeolian mass transport near the saltation threshold. Earth Surf. Process. Landforms 24, 413–422 (1999)

    ADS  Google Scholar 

  9. Butterfield, G.R.: Application of thermal anemometry and high-frequency measurement of mass flux to aeolian sediment transport research. Geomorphology 29, 31–58 (1999)

    ADS  Google Scholar 

  10. McKenna Neuman, C., Lancaster, N., Nickling, W.G.: The effect of unsteady winds on sediment transport on the stoss slope of a transverse dune, Silver Peak, NV USA. Sedimentology 47, 211–226 (2000)

    Google Scholar 

  11. Sterk, G., Jacobs, A.F.G., Van Boxel, J.H.: The effect of turbulent flow structures on saltation sand transport in the atmospheric boundary layer. Earth Surf. Process. Landforms 23, 877–887 (1998)

    ADS  Google Scholar 

  12. Wang, G., Zheng, X.: Very large scale motions in the atmospheric surface layer, a field investigation. J. Fluid Mech. 802, 464–489 (2016)

    ADS  Google Scholar 

  13. Baas, A.C.W., Sherman, D.J.: Formation and behavior of aeolian streamers. J. Geophys. Res. 110, 011 (2005)

    Google Scholar 

  14. Baas, A.C.W.: Challenges in aeolian geomorphology: investigating aeolian streamers. Geomorphology 93(1–2), 3–16 (2008)

    ADS  MathSciNet  Google Scholar 

  15. Baas, A.C.W., van den Berg, F.: Large-scale particle image velocimetry (LSPIV) of aeolian sand transport patterns. Aeol. Res. 34, 117 (2018)

    Google Scholar 

  16. Sherman, D.J.: Understanding wind-blown sand: six vexations. Geomorphology 366, 107193 (2020)

    Google Scholar 

  17. Sauermann, G., Kroy, K., Herrmann, H.J.: A continuum saltation model for sand dunes. Phys. Rev. E 64, 031305 (2001)

    ADS  Google Scholar 

  18. Dupont, S., Bergametti, G., Marticorena, B., Simoëns, S.: Modelling saltation intermittency. J. Geophys. Res. Atmos. 118, 7109–7128 (2013)

    ADS  Google Scholar 

  19. Huang, N., Wang, Z.S.: The formation of snow streamers in the turbulent atmosphere boundary layer. Aeolian Res. 23, 1–10 (2016)

    ADS  Google Scholar 

  20. Reist, P.C.: Introduction to Aerosol Science. Macmillan Publishing Company, New York (1984)

    Google Scholar 

  21. Li, Z., Wang, Y., Zhang, Y.: A numerical study of particle motion and two-phase interaction in aeolian sand transport using a coupled large eddy simulation—Discrete element method. Sedimentology 61(2), 319–332 (2014)

    Google Scholar 

  22. Zheng, X., **, T., Wang, P.: The influence of surface stressfluctuation on saltation sand transportaround threshold. J. Geophys. Res. Earth Surf. 125, e2019JF005246 (2020)

    ADS  Google Scholar 

  23. Wang, P., Feng, S.J., Zheng, X.J., Sung, H.J.: The scalecharacteristics and formationmechanism of aeolian sand streamersbased on large eddy simulation. J. Geophys. Res. Atmos. 124, 11372–11388 (2019)

    ADS  Google Scholar 

  24. Zwaaftink, C.D.G., Diebold, M., Horender, S., Overney, J., Lieberherr, G., Parlange, M.B., Lehning, M.: Modelling smallscale drifting snow with a Lagrangian stochastic model based on large eddy simulations. Bound. Layer Meteorol. 153(1), 117–139 (2014)

    ADS  Google Scholar 

  25. Anderson, R.S.: Eolian sediment transport as a stochastic process: the effects of a fluctuating wind on particle trajectories. The J. Geol. 95, 497–512 (1987)

    ADS  Google Scholar 

  26. Kok, J.F., Parteli, E.J.R., Michaels, T.I., Karam, D.B.: The physics of wind-blown sand and dust. Rep. Prog. Phys. 75, 106901 (2012)

    ADS  Google Scholar 

  27. Ma, G.S., Zheng, X.J.: The fluctuation property of blown sand particles and the wind-sand flow evolution studied by numerical method. Eur. Phys. J. E 34, 54 (2011)

    Google Scholar 

  28. Versteeg, H.K., Malalasekera, W.: An introduction to computational fluid dynamics: the finite volume method. Wiley, New York (1995)

    Google Scholar 

  29. Jiang, H., Huang, N., Zhu, Y.: Analysis of wind-blown sand movement over transverse dunes. Sci. Rep. 4, 7114 (2014)

    ADS  Google Scholar 

  30. Lund, T., Wu, X., Squires, K.: Generation of turbulent inflow data for spatially-develo** boundary layer simulations. J. Comput. Phys. 140, 233–258 (1998)

    ADS  MathSciNet  MATH  Google Scholar 

  31. Zhang, J.H., Wang, P., Zheng, X.J.: A prediction model for simulating near-surface wind gusts. Eur. Phys. J. E 36, 51 (2013)

    ADS  Google Scholar 

  32. Zheng, X.J., Huang, N., Zhou, Y.H.: The effect of electrostatic force on the evolution of sand saltation cloud. Eur. Phys. J. E 19, 129–138 (2006)

    Google Scholar 

  33. Werner, B.T.: A steady-state model of wind-blown sand transport. The J. Geol. 1, 1–17 (1990)

    ADS  Google Scholar 

  34. Sorensen, M.: An analytic model of wind-blown sand transport. Acta Mech. Suppl. 1, 67–81 (1991)

    Google Scholar 

  35. Bagnold, R.A.: The movement of desert sand. Proc. R. Soc. Lond. A 157, 594–620 (1936)

    ADS  Google Scholar 

  36. Lau, T.C.W., Nathan, J.: Influence of stokes number on the velocity and concentration distributions in particle-laden jets. J. Fluid Mech. 757(6), 432–457 (2014)

    ADS  Google Scholar 

  37. Kang, L., Guo, L., Liu, D.: Reconstructing the vertical distribution of the aeolian saltation mass flux based on the probability distribution of lift-off velocity. Geomorphology 96, 1–15 (2008)

    ADS  Google Scholar 

  38. Belad**e, D., Ammi, M., Oger, L., Valance, A.: Collision process between an incident bead and a three-dimensional granular packing. Phys. Rev. E 75, 061305 (2007)

    ADS  Google Scholar 

  39. Zhou, Y.H., Li, W.Q., Zheng, X.J.: Particle dynamics method simulations of stochastic collisions of sandy grain-bed with mixed size in aeolian sand saltation. J. Geophys. Res. (2006). https://doi.org/10.1029/2005JD006604

    Article  Google Scholar 

  40. Anderson, R.S., Haff, P.K.: Wind modification and bed response during saltation of sand in air. In: Willetts, B.B., Barndorff-Nielsen, O.E. (eds.) Aeolian Grain Transport 1, pp. 21–51. Springer Vienna, Vienna (1991)

    Google Scholar 

  41. Rice, M.A., Willetts, B.B., McEwan, I.K.: An experimental study of multiple grain-size ejecta produced by collisions of saltating grains with a flat bed. Sedimentology 42, 695–706 (1995)

    ADS  Google Scholar 

  42. Shao, Y., Li, A.: Numerical modelling of saltation in atmospheric surface layer. Bound. Lay. Meteorol. 91, 199–225 (1999)

    ADS  Google Scholar 

  43. Kok, J.F., Renno, N.O.: A comprehensive numerical model of steady state saltation (COMSALT). J. Geophys. Res. 114, 2156–2202 (2009)

    Google Scholar 

  44. Butterfield, G.R.: Transitional behavior of salutation: wind tunnel observations of unsteady winds. J. Arid Environ. 39, 337–394 (1998)

    Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China (11362010&11902131).

Author information

Authors and Affiliations

Authors

Contributions

Ma realized the calculation and analysis process as well as wrote the manuscript. YW and JZ help deal with the data and the post-translation work. All authors attended discussion with this work and gave suggestions.

Corresponding author

Correspondence to Gaosheng Ma.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, G., Wang, Y. & Zheng, J. Numerical analysis of the influence of the near ground turbulence on the wind-sand flow under the natural wind. Granular Matter 23, 40 (2021). https://doi.org/10.1007/s10035-021-01097-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-021-01097-3

Keywords

Navigation