Log in

Fine Root and Soil Organic Carbon Depth Distributions are Inversely Related Across Fertility and Rainfall Gradients in Lowland Tropical Forests

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Humid tropical forests contain some of the largest soil organic carbon (SOC) stocks on Earth. Much of this SOC is in subsoil, yet variation in the distribution of SOC through the soil profile remains poorly characterized across tropical forests. We used a correlative approach to quantify relationships among depth distributions of SOC, fine root biomass, nutrients and texture to 1 m depths across 43 lowland tropical forests in Panama. The sites span rainfall and soil fertility gradients, and these are largely uncorrelated for these sites. We used fitted β parameters to characterize depth distributions, where β is a numerical index based on an asymptotic relationship, such that larger β values indicate greater concentrations of root biomass or SOC at depth in the profile. Root β values ranged from 0.82 to 0.95 and were best predicted by soil pH and extractable potassium (K) stocks. For example, the three most acidic (pH < 4) and K-poor (< 20 g K m−2) soils contained 76 ± 5% of fine root biomass from 0 to 10 cm depth, while the three least acidic (pH > 6.0) and most K-rich (> 50 g K m−2) soils contained only 41 ± 9% of fine root biomass at this depth. Root β and SOC β values were inversely related, such that a large fine root biomass in surface soils corresponded to large SOC stocks in subsoils (50–100 cm). SOC β values were best predicted by soil pH and base cation stocks, with the three most base-poor soils containing 34 ± 8% of SOC from 50 to 100 cm depth, and the three most base-rich soils containing just 9 ± 2% of SOC at this depth. Nutrient depth distributions were not related to Root β or SOC β values. These data show that large surface root biomass stocks are associated with large subsoil C stocks in strongly weathered tropical soils. Further studies are required to evaluate why this occurs, and whether changes in surface root biomass, as may occur with global change, could in turn influence SOC storage in tropical forest subsoils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Angst G, Messinger J, Greiner M, Hausler W, Hertel D, Kirfel K, Kogel-Knabner I, Leuschner C, Rethemeyer J, Mueller CW. 2018. Soil organic carbon stocks in topsoil and subsoil controlled by parent material, carbon input in the rhizosphere, and microbial-derived compounds. Soil Biology and Biochemistry 122:19–30.

    Article  CAS  Google Scholar 

  • Aragao L, Malhi Y, Metcalfe DB, Silva-Espejo JE, Jimenez E, Navarrete D, Almeida S, Costa ACL, Salinas N, Phillips OL, Anderson LO, Alvarez E, Baker TR, Goncalvez PH, Huaman-Ovalle J, Mamani-Solorzano M, Meir P, Monteagudo A, Patino S, Penuela MC, Prieto A, Quesada CA, Rozas-Davila A, Rudas A, Silva JA, Vasquez R. 2009. Above- and below-ground net primary productivity across ten Amazonian forests on contrasting soils. Biogeosciences 6:2759–78.

    Article  Google Scholar 

  • Beinroth, FH, MA Vázquez, VA Snyder, PF Reich, and LR Pérez Alegria. 1996. Factors controlling carbon sequestration in tropical soils: a case study of Puerto Rico. Department of Agronomy and Soils, University of Puerto Rico at Mayaguez, and USDA Natural Resources Conservation Service World Soil Resources and Caribbean Area Office, San Juan, Puerto Rico.

  • Berish CW. 1982. Root biomass and surface area in three successional tropical forests. Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere 12:699–704.

    Article  Google Scholar 

  • Bird JA, Kleber M, Torn MS. 2008. 13C and 15N stabilization dynamics in soil organic matter fractions during needle and fine root decomposition. Organic Geochemistry 39:465–77.

    Article  CAS  Google Scholar 

  • Bloom AJ, Chapin FS, Mooney HA. 1985. Resource limitation in plants—an economic analogy. Annual Review of Ecology and Systematics 16:363–92.

    Article  Google Scholar 

  • Cavelier J. 1992. Fine root biomass and soil properties in a semideciduous and a lower montane rainforest in Panama. Plant and Soil 142:187–201.

    Article  CAS  Google Scholar 

  • Chaopricha NT, Marin-Spiotta E, Mason JA. 2010. The nature of ancient organic matter in buried paleosol mineral horizons. Geochimica Et Cosmochimica Acta 74:A161.

    Google Scholar 

  • Condit R, Engelbrecht BMJ, Pino D, Perez R, Turner BL. 2013. Species distributions in response to individual soil nutrients and seasonal drought across a community of tropical trees. Proceedings of the National Academy of Sciences of the United States of America 110:5064–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cordeiro, A, R Norby, K Andersen, O Valverde-Barrantes, L Fuchslueger, E Oblitas, I Hartley, C Iversen, N Goncalves, B Takeshi, D Lapola, and C Quesada. 2020. Fine-root dynamics vary with soil depth and precipitation in a low-nutrient tropical forest in the Central Amazonia. Plant–Environment Interactions 0:1-14.

  • Cuevas E, Medina E. 1988. Nutrient dynamics within Amazonian forests. 2. Fine root growth, nutrient availability and leaf litter decomposition. Oecologia 76:222–35.

    Article  PubMed  Google Scholar 

  • Cusack D, Ashdown D, Dietterich L, Neupane A, Ciochina M, Turner B. 2019. Seasonal changes in soil respiration linked to soil moisture and phosphorus availability along a tropical rainfall gradient. Biogeochemistry 145:235–54.

    Article  CAS  Google Scholar 

  • Cusack, D, and E Marin-Spiotta. 2019. Chapter 8: Wet tropical soils and global change. Pages 131–169 in M. Busse, C. Giardina, D. Morris, and D. Page-Dumroese, editors. Global Change and Forest Soils: Cultivating Stewardship of a Finite Natural Resource Elsevier, Amsterdam, Netherlands.

  • Cusack D, Markesteijn L, Condit R, Lewis O, Turner B. 2018. Soil carbon stocks in tropical forests of Panama regulated by base cation effects on fine roots. Biogeochemistry 137:253–66.

    Article  CAS  Google Scholar 

  • Cusack DF, Karpman J, Ashdown D, Cao Q, Ciochina M, Halterman S, Lydon S, Neupane A. 2016. Global change effects on humid tropical forests: Evidence for biogeochemical and biodiversity shifts at an ecosystem scale. Reviews of Geophysics 54:523–610.

    Article  Google Scholar 

  • Cusack DF, Silver WL, Torn MS, McDowell WH. 2011. Effects of nitrogen additions on above- and belowground carbon dynamics in two tropical forests. Biogeochemistry 104:203–25.

    Article  CAS  Google Scholar 

  • Dontsova KM, Bigham JM. 2005. Anionic polysaccharide sorption by clay minerals. Soil Science Society of America Journal 69:1026–35.

    Article  CAS  Google Scholar 

  • Engelbrecht BMJ, Comita LS, Condit R, Kursar TA, Tyree MT, Turner BL, Hubbell SP. 2007. Drought sensitivity shapes species distribution patterns in tropical forests. Nature 447:U80–2.

    Article  CAS  Google Scholar 

  • Espeleta JF, Clark DA. 2007. Multi-scale variation in fine-root biomass in a tropical rain forest: A seven-year study. Ecological Monographs 77:377–404.

    Article  Google Scholar 

  • Eusterhues K, Rumpel C, Kleber M, Kogel-Knabner I. 2003. Stabilisation of soil organic matter by interactions with minerals as revealed by mineral dissolution and oxidative degradation. Organic Geochemistry 34:1591–600.

    Article  CAS  Google Scholar 

  • FAO. 2012. Global Ecological Zones for FAO Forest Reporting: 2010 Update. Rome: Food and Agriculture Organication of the United Nations.

    Google Scholar 

  • Fisher, J, N Perakalapudi, B Turner, D Schimel, and D Cusack. 2020. Competing effects of soil fertility and toxicity on tropical greening. Scientific Reports in press.

  • Fontaine S, Barot S, Barre P, Bdioui N, Mary B, Rumpel C. 2007. Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature 450:277–80.

    Article  CAS  PubMed  Google Scholar 

  • Gale MR, Grigal DF. 1987. Vertical root distributions of northern tree species in relation to successional status. Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere 17:829–34.

    Article  Google Scholar 

  • Girardin CAJ, Aragao L, Malhi Y, Huasco WH, Metcalfe DB, Durand L, Mamani M, Silva-Espejo JE, Whittaker RJ. 2013. Fine root dynamics along an elevational gradient in tropical Amazonian and Andean forests. Global Biogeochemical Cycles 27:252–64.

    Article  CAS  Google Scholar 

  • Godbold DL, Fritz HW, Jentschke G, Meesenburg H, Rademacher P. 2003. Root turnover and root necromass accumulation of Norway spruce (Picea abies) are affected by soil acidity. Tree Physiology 23:915–21.

    Article  PubMed  Google Scholar 

  • Gower ST. 1987. Relations between mineral nutrient availability and fine root biomass in two Costa Rican tropical wet forests—a hypothesis. Biotropica 19:171–5.

    Article  Google Scholar 

  • Green IJ, Dawson LA, Proctor J, Duff EI, Elston DA. 2005. Fine root dynamics in a tropical rain forest is influenced by rainfall. Plant and Soil 276:23–32.

    Article  CAS  Google Scholar 

  • Guevara R, Romero I. 2007. Buttressed trees of Brosimum alicatrum Sw. affect mycelial mat abundance and indirectly the composition of soil meso-fauna. Soil Biology and Biochemistry 39:289–94.

    Article  CAS  Google Scholar 

  • Holdridge L, Grenke W, Hatheway W, Liang T, Tosi J. 1971. Forest environments in tropical life zones. New York: Pergamon Press.

    Google Scholar 

  • Holzman B. 2008. Tropical Forest Biomes. London: Greenwood Publishing Group.

    Google Scholar 

  • Jackson RB, Canadell J, Ehleringer JR, Mooney HA, Sala OE, Schulze ED. 1996. A global analysis of root distributions for terrestrial biomes. Oecologia 108:389–411.

    Article  CAS  PubMed  Google Scholar 

  • Jansen B, Nierop KGJ, Verstraten JM. 2002. Influence of pH and metal/carbon ratios on soluble organic complexation of Fe(II), Fe(III) and Al(III) in soil solutions determined by diffusive gradients in thin films. Analytica Chimica Acta 454:259–70.

    Article  CAS  Google Scholar 

  • Jimenez EM, Moreno FH, Penuela MC, Patino S, Lloyd J. 2009. Fine root dynamics for forests on contrasting soils in the Colombian Amazon. Biogeosciences 6:2809–27.

    Article  CAS  Google Scholar 

  • Jobbagy EG, Jackson RB. 2000. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications 10:423–36.

    Article  Google Scholar 

  • Kemmitt SJ, Wright D, Goulding KWT, Jones DL. 2006. pH regulation of carbon and nitrogen dynamics in two agricultural soils. Soil Biology and Biochemistry 38:898–911.

    Article  CAS  Google Scholar 

  • Kochsiek A, Tan S, Russo SE. 2013. Fine root dynamics in relation to nutrients in oligotrophic Bornean rain forest soils. Plant Ecology 214:869–82.

    Article  Google Scholar 

  • Kunito T, Isomura I, Sumi H, Park H-D, Toda H, Otsuka S, Nagaoka K, Saeki K, Senoo K. 2016. Aluminum and acidity suppress microbial activity and biomass in acidic forest soils. Soil Biology and Biochemistry 97:23–30.

    Article  CAS  Google Scholar 

  • Laliberte E, Lambers H, Burgess TI, Joseph Wright S. 2015. Phosphorus limitation, soil-borne pathogens and the coexistence of plant species in hyperdiverse forests and shrublands. New Phytologist 206:507–21.

    Article  CAS  Google Scholar 

  • Lorenz K, Lal R, Preston CM, Nierop KGJ. 2007. Strengthening the soil organic carbon pool by increasing contributions from recalcitrant aliphatic bio(macro)molecules. Geoderma 142:1–10.

    Article  CAS  Google Scholar 

  • Madsen C, Potvin C, Hall J, Sinacore K, Turner BL, Schnabel F. 2020. Coarse root architecture: Neighbourhood and abiotic environmental effects on five tropical tree species growing in mixtures and monocultures. Forest Ecology and Management 460:11.

    Article  Google Scholar 

  • Marin-Spiotta E, Chadwick OA, Kramer M, Carbone MS. 2011. Carbon delivery to deep mineral horizons in Hawaiian rain forest soils. Journal of Geophysical Research-Biogeosciences 116:14.

    Article  CAS  Google Scholar 

  • Markesteijn L, Poorter L. 2009. Seedling root morphology and biomass allocation of 62 tropical tree species in relation to drought- and shade-tolerance. Journal of Ecology 97:311–25.

    Article  Google Scholar 

  • Maycock CR, Congdon RA. 2000. Fine root biomass and soil N and P in north Queensland rain forests. Biotropica 32:185–90.

    Article  Google Scholar 

  • McCormack ML, Dickie IA, Eissenstat DM, Fahey TJ, Fernandez CW, Guo DL, Helmisaari HS, Hobbie EA, Iversen CM, Jackson RB, Leppalammi-Kujansuu J, Norby RJ, Phillips RP, Pregitzer KS, Pritchard SG, Rewald B, Zadworny M. 2015. Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes. New Phytologist 207:505–18.

    Article  Google Scholar 

  • McDowell WH. 1998. Internal nutrient fluxes in a Puerto Rican rain forest. Journal of Tropical Ecology 14:521–36.

    Article  Google Scholar 

  • Messmer T, Elsenbeer H, Wilcke W. 2014. High exchangeable calcium concentrations in soils on Barro Colorado Island, Panama. Geoderma 217:212–24.

    Article  CAS  Google Scholar 

  • Metcalfe DB, Meir P, Aragao L, da Costa ACL, Braga AP, Goncalves PHL, Silva JD, de Almeida SS, Dawson LA, Malhi Y, Williams M. 2008. The effects of water availability on root growth and morphology in an Amazon rainforest. Plant and Soil 311:189–99.

    Article  CAS  Google Scholar 

  • Michalzik B, Tip** E, Mulder J, Lancho JFG, Matzner E, Bryant CL, Clarke N, Lofts S, Esteban MAV. 2003. Modelling the production and transport of dissolved organic carbon in forest soils. Biogeochemistry 66:241–64.

    Article  CAS  Google Scholar 

  • Mora JL, Guerra JA, Armas-Herrera CM, Arbelo CD, Rodriguez-Rodriguez A. 2014. Storage and depth distribution of organic carbon in volcanic soils as affected by environmental and pedological factors. Catena 123:163–75.

    Article  CAS  Google Scholar 

  • Nadelhoffer KJ, Aber JD, Melillo JM. 1985. Fine roots, net primary production and soil nitrogen availability—a new hypothesis. Ecology 66:1377–90.

    Article  Google Scholar 

  • Noguchi H, Suwa R, De Souza CAS, da Silva RP, dos Santos J, Higuchi N, Kajimoto T, Ishizuka M. 2014. Examination of Vertical Distribution of Fine Root Biomass in a Tropical Moist Forest of the Central Amazon, Brazil. Jarq-Japan Agricultural Research Quarterly 48:231–5.

    Article  Google Scholar 

  • Oh NH, Richter DD. 2005. Elemental translocation and loss from three highly weathered soil-bedrock profiles in the southeastern United States. Geoderma 126:5–25.

    Article  CAS  Google Scholar 

  • Ota M, Nagai H, Koarashi J. 2013. Root and dissolved organic carbon controls on subsurface soil carbon dynamics: A model approach. Journal of Geophysical Research-Biogeosciences 118:1646–59.

    Article  CAS  Google Scholar 

  • Prada CM, Morris A, Andersen KM, Turner BL, Caballero P, Dalling JW. 2017. Soils and rainfall drive landscape-scale changes in the diversity and functional composition of tree communities in premontane tropical forest. Journal of Vegetation Science 28:859–70.

    Article  Google Scholar 

  • Pregitzer KS, Zak DR, Curtis PS, Kubiske ME, Teeri JA, Vogel CS. 1995. Atmospheric CO2, soil nitrogen and turnover of fine roots. New Phytologist 129:579–85.

    Article  Google Scholar 

  • Pries CEH, Bird JA, Castanha C, Hatton PJ, Torn MS. 2017. Long term decomposition: the influence of litter type and soil horizon on retention of plant carbon and nitrogen in soils. Biogeochemistry 134:5–16.

    Article  CAS  Google Scholar 

  • Pries CEH, Sulman BN, West C, O’Neill C, Poppleton E, Porras RC, Castanha C, Zhu B, Wiedemeier DB, Torn MS. 2018. Root litter decomposition slows with soil depth. Soil Biology and Biochemistry 125:103–14.

    Article  CAS  Google Scholar 

  • Pyke CR, Condit R, Aguilar S, Lao S. 2001. Floristic composition across a climatic gradient in a neotropical lowland forest. Journal of Vegetation Science 12:553–66.

    Article  Google Scholar 

  • Quesada CA, Lloyd J, Anderson LO, Fyllas NM, Schwarz M, Czimczik CI. 2011. Soils of Amazonia with particular reference to the RAINFOR sites. Biogeosciences 8:1415–40.

    Article  CAS  Google Scholar 

  • Quesada CA, Lloyd J, Schwarz M, Patino S, Baker TR, Czimczik C, Fyllas NM, Martinelli L, Nardoto GB, Schmerler J, Santos AJB, Hodnett MG, Herrera R, Luizao FJ, Arneth A, Lloyd G, Dezzeo N, Hilke I, Kuhlmann I, Raessler M, Brand WA, Geilmann H, Moraes JO, Carvalho FP, Araujo RN, Chaves JE, Cruz OF, Pimentel TP, Paiva R. 2010. Variations in chemical and physical properties of Amazon forest soils in relation to their genesis. Biogeosciences 7:1515–41.

    Article  CAS  Google Scholar 

  • Quesada CA, Paz C, Mendoza EO, Phillips OL, Saiz G, Lloyd J. 2020. Variations in soil chemical and physical properties explain basin-wide Amazon forest soil carbon concentrations. Soil 6:53–88.

    Article  CAS  Google Scholar 

  • Rasse DP, Rumpel C, Dignac MF. 2005. Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation. Plant and Soil 269:341–56.

    Article  CAS  Google Scholar 

  • Rodtassana C, Tanner EVJ. 2018. Litter removal in a tropical rain forest reduces fine root biomass and production but litter addition has few effects. Ecology 99:735–42.

    Article  CAS  PubMed  Google Scholar 

  • Roychand P, Marschner P. 2014. Respiration and sorption of water-extractable organic carbon as affected by addition of Ca2+, isolated clay or clay-rich subsoil to sand. Pedosphere 24:98–106.

    Article  CAS  Google Scholar 

  • Rumpel C, Kogel-Knabner I. 2011. Deep soil organic matter—a key but poorly understood component of terrestrial C cycle. Plant and Soil 338:143–58.

    Article  CAS  Google Scholar 

  • Rumpel C, Kogel-Knabner I, Bruhn F. 2002. Vertical distribution, age, and chemical composition of organic, carbon in two forest soils of different pedogenesis. Organic Geochemistry 33:1131–42.

    Article  CAS  Google Scholar 

  • Saggar S, Parshotam A, Sparling GP, Feltham CW, Hart PBS. 1996. C-14-labelled ryegrass turnover and residence times in soils varying in clay content and mineralogy. Soil Biology and Biochemistry 28:1677–86.

    Article  CAS  Google Scholar 

  • Sanderman J, Amundson R. 2008. A comparative study of dissolved organic carbon transport and stabilization in California forest and grassland soils. Biogeochemistry 89:309–27.

    Article  Google Scholar 

  • Schachtman DP, Reid RJ, Ayling SM. 1998. Phosphorus uptake by plants: From soil to cell. Plant Physiology 116:447–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schachtman DP, Schroeder JI. 1994. Structure and transport mechanism of high-affinity potassium uptake transporter from higher plants. Nature 370:655–8.

    Article  CAS  PubMed  Google Scholar 

  • Scheel T, Jansen B, van Wijk AJ, Verstraten JM, Kalbitz K. 2008. Stabilization of dissolved organic matter by aluminium: a toxic effect or stabilization through precipitation? European Journal of Soil Science 59:1122–32.

    Article  CAS  Google Scholar 

  • Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Kogel-Knabner I, Lehmann J, Manning DAC, Nannipieri P, Rasse DP, Weiner S, Trumbore SE. 2011. Persistence of soil organic matter as an ecosystem property. Nature 478:49–56.

    Article  CAS  PubMed  Google Scholar 

  • Schoening I, Koegel-Knabner I. 2006. Chemical composition of young and old carbon pools throughout Cambisol and Luvisol profiles under forests. Soil Biology and Biochemistry 38:2411–24.

    Article  CAS  Google Scholar 

  • Schwarz G. 1978. Estimating dimension of a model. Annals of Statistics 6:461–4.

    Article  Google Scholar 

  • Sheldrake M, Rosenstock NP, Revillini D, Olsson PA, Wright SJ, Turner BL. 2017. A phosphorus threshold for mycoheterotrophic plants in tropical forests. Proceedings of the Royal Society B-Biological Sciences 284:9.

    Google Scholar 

  • Singh M, Sarkar B, Biswas B, Churchman J, Bolan NS. 2016. Adsorption-desorption behavior of dissolved organic carbon by soil clay fractions of varying mineralogy. Geoderma 280:47–56.

    Article  CAS  Google Scholar 

  • Smith S, Read D. 2008. Mycorrhizal symbiosis. London: Academic Press.

    Google Scholar 

  • Soil Survey Staff. 1999. Soil Taxonomy: A Basic System of Soil Classification for Making and Interpreting Soil Surveys. NE: Lincoln.

    Google Scholar 

  • Stark N, Jordan CF. 1978. Nutrient retention in the root mat of an Amazonian rain forest. Ecology 59:434–7.

    Article  CAS  Google Scholar 

  • Stewart, R, J Stewart, and W Woodring. 1980. Geologic map of the Panama Canal and vicinity, Republic of Panama. Map I-1232. United States Geological Survey, Boulder, CO.

  • STRI. 2020. Physical Monitoring. Panama: Smithsonian Tropical Research Institute.

    Google Scholar 

  • Tonneijck FH, Jansen B, Nierop KGJ, Verstraten JM, Sevink J, De Lange L. 2010. Towards understanding of carbon stocks and stabilization in volcanic ash soils in natural Andean ecosystems of northern Ecuador. European Journal of Soil Science 61:392–405.

    Article  CAS  Google Scholar 

  • Turner, BL, T Brenes-Arguedas, and R Condit. 2018. Pervasive phosphorus limitation of tree species but not communities in tropical forests. Nature 555:367–+.

  • Turner BL, Engelbrecht BMJ. 2011. Soil organic phosphorus in lowland tropical rain forests. Biogeochemistry 103:297–315.

    Article  CAS  Google Scholar 

  • Turner BL, Wright SJ. 2014. The response of microbial biomass and hydrolytic enzymes to a decade of nitrogen, phosphorus, and potassium addition in a lowland tropical rain forest. Biogeochemistry 117:115–30.

    Article  CAS  Google Scholar 

  • Turner BL, Yavitt JB, Harms KE, Garcia MN, Wright SJ. 2015. Seasonal changes in soil organic matter after a decade of nutrient addition in a lowland tropical forest. Biogeochemistry 123:221–35.

    Article  CAS  Google Scholar 

  • Vance ED, Nadkarni NM. 1992. Root biomass distribution in a moist tropical montane forest. Plant and Soil 142:31–9.

    Article  Google Scholar 

  • Vogt KA, Vogt DJ, Bloomfield J. 1998. Analysis of some direct and indirect methods for estimating root biomass and production of forests at an ecosystem level. Plant and Soil 200:71–89.

    Article  CAS  Google Scholar 

  • Wattel-Koekkoek EJW, Buurman P, van der Plicht J, Wattel E, van Breemen N. 2003. Mean residence time of soil organic matter associated with kaolinite and smectite. European Journal of Soil Science 54:269–78.

    Article  Google Scholar 

  • Wattel-Koekkoek EJW, van Genuchten PPL, Buurman P, van Lagen B. 2001. Amount and composition of clay-associated soil organic matter in a range of kaolinitic and smectitic soils. Geoderma 99:27–49.

    Article  CAS  Google Scholar 

  • Wieder RK, Wright SJ. 1995. Tropical forest litter dynamics and dry season irrigation on Barro Colorado Island, Panama. Ecology 76:1971–9.

    Article  Google Scholar 

  • Windsor, D, A Rand, and W Rand. 1990. Caracteristicas de la Precipitacion de la Isla de Barro Colorado.

  • Wurzburger N, Wright SJ. 2015. Fine-root responses to fertilization reveal multiple nutrient limitation in a lowland tropical forest. Ecology 96:2137–46.

    Article  PubMed  Google Scholar 

  • Yaffar D, Norby RJ. 2020. A historical and comparative review of 50 years of root data collection in Puerto RicoPalabras Clave. Biotropica 52:563–76.

    Article  Google Scholar 

  • Yao QM, Li Z, Song Y, Wright SJ, Guo X, Tringe SG, Tfaily MM, Pasa-Tolic L, Hazen TC, Turner BL, Mayes MA, Pan CL. 2018. Community proteogenomics reveals the systemic impact of phosphorus availability on microbial functions in tropical soil. Nature Ecology and Evolution 2:499–509.

    Article  PubMed  Google Scholar 

  • Yavitt JB, Harms KE, Garcia MN, Mirabello MJ, Wright SJ. 2011. Soil fertility and fine root dynamics in response to 4 years of nutrient (N, P, K) fertilization in a lowland tropical moist forest, Panama. Austral Ecology 36:433–45.

    Article  Google Scholar 

  • Yavitt JB, Wright SJ. 2001. Drought and irrigation effects on fine root dynamics in a tropical moist forest, Panama. Biotropica 33:421–34.

    Article  Google Scholar 

  • Zemunik G, Davies SJ, Turner BL. 2018. Soil drivers of local-scale tree growth in a lowland tropical forest. Ecology 99:2844–52.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Funding was provided by NSF GSS Grant No. BCS-1437591 and DOE grant DE-SC0015898 to D. F. Cusack. We thank Julio Rodriguez, Didimo Urena and David Brassfield for field support, Dayana Agudo, Aleksandra Bielnicka, Dianne de la Cruz, Tania Romero and Irene Torres for laboratory support, and Carley Tsiames for research support. Data are available in tables, figures and SI. We would like to thank Peter Vitousek and two anonymous reviewers for very helpful comments that improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela F. Cusack.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 1058 kb)

Supplementary material 2 (XLSX 32 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cusack, D.F., Turner, B.L. Fine Root and Soil Organic Carbon Depth Distributions are Inversely Related Across Fertility and Rainfall Gradients in Lowland Tropical Forests. Ecosystems 24, 1075–1092 (2021). https://doi.org/10.1007/s10021-020-00569-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-020-00569-6

Keywords

Navigation