Log in

Review of ependymomas: assessment of consensus in pathological diagnosis and correlations with genetic profiles and outcome

  • Original Article
  • Published:
Brain Tumor Pathology Aims and scope Submit manuscript

Abstract

We focused on histological and immunohistochemical characteristics of ependymoma (EPN) with molecular profiles to develop more reproducible criteria of the diagnosis. Three expert neuropathologists reviewed the pathology of 130 samples from the Japan Pediatric Molecular Neuro-Oncology Group study. Confirmed cases were assessed for histology, surrogate markers, molecular subgrou**, and survival data. We reached a consensus regarding the diagnosis of EPNs in 100% of spinal cord tumors and 93% of posterior fossa (PF) tumors that had been diagnosed as EPNs by local pathologists, whereas we reached a consensus regarding only 77% of the local diagnosis of supratentorial (ST) EPNs. Among the PF-EPNs, most of anaplastic ependymomas (AEPNs) were defined as EPN-A by methylation profiling, which was significantly correlated with the subgroup assignment. Regarding prognosis, the overall survival of patients with PF-EPN was significantly better than that of patients with PF AEPN (p = 0.01). Histologically, all ependymoma, RELA fusion-positive (EPN-RELA) qualified as Grade III. Both L1 cell adhesion molecule and nuclear factor kappaB p65 antibodies showed good sensitivity for detecting EPN-RELA. This study indicated that the expert consensus pathological diagnosis could correlate well with the molecular classifications in EPNs. ST EPNs should be diagnosed more carefully by histological and molecular analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ellison DW, McLendon R, Wiestler OD et al (2016) Ependymoma. In: Louis DN, Ohgaki H. Wiestler OD, Cavenee WK (eds) WHO classification of tumours of the central nervous system. Fourth Edition revised. IARC press, Lyon, pp 106–111

    Google Scholar 

  2. Healey EA, Barnes PD, Kupsky WJ et al Scott RM, Sallan SE, Black PM, Tarbell NJ (1991) The prognostic significance of postoperative residual tumor in ependymoma. Neurosurgery 28:666–671

    Article  CAS  Google Scholar 

  3. Ikezaki K, Matsushima T, Inoue T et al (1993) Correlation of microanatomical localization with postoperative survival in posterior fossa ependymomas. Neurosurgery 32:38–44

    Article  CAS  PubMed  Google Scholar 

  4. Pollack IF, Gerszten PC, Martinez AJ et al (1995) Intracranial ependymomas of childhood: long-term outcome and prognostic factors. Neurosurgery 37:655–666

    Article  CAS  PubMed  Google Scholar 

  5. van Veelen-Vincent ML, Pierre-Kahn A, Kalifa C et al (2002) Ependymoma in childhood: prognostic factors, extent of surgery, and adjuvant therapy. J Neurosurg 97:827–835

    Article  PubMed  Google Scholar 

  6. Metellus P, Barrie M, Figarella-Branger D et al (2007) Multicentric French study on adult intracranial ependymomas: prognostic factors analysis and therapeutic considerations from a cohort of 152 patients. Brain 130:1338–1349

    Article  Google Scholar 

  7. Ellison DW, Kocak M, Figarella-Branger D et al (2011) Histopathological grading of pediatric ependymoma: reproducibility and clinical relevance in European trial cohorts. J Negative Results Biomed 10:7

    Article  Google Scholar 

  8. Pajtler K, Mack SC, Ramaswamy V et al (2017) The current consensus on the clinical management of intracranial ependymoma and its distinct molecular variant. Acta Neuropathol 133:5–12

    Article  CAS  PubMed  Google Scholar 

  9. Acquaye A, Vera E, Gilbert MR et al (2017) Clinical presentation and outcomes for adult ependymoma patients. Cancer 123:494–501

    Article  PubMed  Google Scholar 

  10. Parker M, Mohankumar KM, Punchihewa C et al (2014) C11orf95-RELA fusions drive oncogenic NF-κB signallimng in ependymoma. Nature 506:451–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pajtler KW, Witt H, Sill M et al (2015) Molecular classification of ependymal tumors across all CNS compartments. Histopathological grades, and age groups. Cancer Cell 27:728–743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Figarella-Branger D, Lachapt-Zalcman E, Tobouret E et al (2016) Supratentorial clear cell ependymomas with branching capillaries demonstrate characteristic clinicopathological features and pathological activation of nuclear factor-kappaB signaling. Neuro-Oncol 18:919–927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nakamura T, Fukuoka K, Ikeda J et al (2017) Encouraging option of multi-staged gross total resection for a C11orf-RelA fusion-positive supratentorial anaplastic ependymoma. Brain Tumor Pathol 34:160–164

    Article  CAS  PubMed  Google Scholar 

  14. Onishi S, Yamasaki F, Nakano Y et al (2018) RELA fusion-positive anaplastic ependymoma: molecular characterization and advanced MR imaging. Brain Tumor Pathol 35:41–45

    Article  PubMed  Google Scholar 

  15. Witt H, Mack SC, Ryzhova M et al (2011) Delineation of two clinically and molecularly distinct subgroups of posterior fossa ependymoma. Cancer Cell 20:143–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sasaki A, Yokoo H, Tanaka Y et al (2013) Characterization of microglia/macrophages in gliomas developed in S-100βv-erbB transgenic rats. Neuropathology 33:505–514

    CAS  PubMed  Google Scholar 

  17. Fukuoka K, Kanemura Y, Shofuda T et al (2018) Significance of molecular classification in ependymomas: C11orf95-RELA fusion-negative supratentorial ependymomas are a heterogenous group of tumor. Acta Neuropathol Commun 6(1):134. https://doi.org/10.1186/s40478-018-0630-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wani K, Armstrong TS, Vera-Bolanos E et al (2012) Collaborative Ependymoma Research Network. A prognostic gene expression signature in infratentorial ependymoma. Acta Neuropathol 123:727–738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hoffman LM, Donson AM, Nakachi I et al (2014) Molecular sub-group-specific immunophenotypic changes are associated with outcome in recurrent posterior fossa ependymoma. Acta Neuropathol 127:731–745

    Article  CAS  PubMed  Google Scholar 

  20. Tihan T, Zhou T, Holmes E et al (2008) The prognostic value of histological grading of posterior fossa ependymomas in children: a Children’s Oncology Group study and a review of prognostic factors. Mod Pathol 21:165–177

    Article  PubMed  Google Scholar 

  21. Rezai AR, Woo HH, Lee M et al (1996) Disseminated ependymomas of the central nervous system. J Neurosurg 85:618–624

    Article  CAS  PubMed  Google Scholar 

  22. Prayson RA (1998) Cyclin D1 and MIB-1 immunohistochemistry in ependymomas: a study of 41 cases. Am J Clin Pathol 110:629–634

    Article  CAS  PubMed  Google Scholar 

  23. Figarella-Branger D, Civatte M, Bouvier-Labit C et al (2000) Prognostic factors in intracranial ependymomas in children. J Neurosurg 93:605–613

    Article  CAS  PubMed  Google Scholar 

  24. Wolfsberger S, Fischer I, Hoftberger R et al (2004) Ki-67 immunolabeling index is an accurate predictor of outcome in patients with intracranial ependymoma. Am J Surg Pathol 28:914–920

    Article  PubMed  Google Scholar 

  25. Kurt E, Zheng PP, Hop WC et al (2006) Identification of relevant prognostic histopathologic features in 69 intracranial ependymomas, excluding myxopapillary ependymomas and subependymomas. Cancer 106:388–395

    Article  PubMed  Google Scholar 

  26. Araki A, Chocholous M, Gojo J et al (2016) Chromosome 1q gain ad tenascin-C expression are candidate markers to define different risk groups in pediatric posterior fossa ependymoma. Acta Neuropathol Commun 4:88–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bayliss J, Mukherjee P, Lu C et al (2016) Lowered H3K27me3 and DNA hypomethylation define poorly prognostic pediatric posterior fossa ependymomas. Sci Transl Med 8:366ra161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Panwalkar P, Clark J, Ramaswamy V et al (2017) Immunohistochemical analysis of H3K27me3 demonstrates global reduction in group-A childhood posterior fossa ependymoma and is a powerful predictor of outcome. Acta Neuropathol 134:705–714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tsuzuki T, Izumoto S, Ohnishi T et al (1998) Neural cell adhesion molecule L1 in gliomas: correlation with TGF-β. J Clin Pathol 51:13–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Suzuki T, Izumoto S, Fujimoto Y et al (2005) Clinicopathological study of cellular proliferation and invasion in gliomatosis cerebri: important role of neural cell adhesion molecule L1 in tumour invasion. J Clin Pathol 58:166–171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pietsch T, Wohlers I, Goschzik T et al (2014) Supratentorial epoendymomas of childfood carry C11orf95-RELA fusions leading to pathological activation of the NF-κB signalling pathway. Acta Neuropathol 127:609–611

    Article  PubMed  Google Scholar 

  32. Wang H, Wang H, Zhang W et al (2004) Analysis of the activation status of Akt, NFκB, and Stat3 in human diffuse gliomas. Lab Invest 84:941–951

    Article  CAS  PubMed  Google Scholar 

  33. Min KW, Scheithauer BW (1997) Clear cell ependymoma: a mimic of oligodendroglioma: clinicopathologic and ultrastructural considerations. Am J Surg Pathol 21:820–826

    Article  CAS  PubMed  Google Scholar 

  34. Fouladi M, Helton K, Dalton J et al (2003) Clear cell ependymoma: a clinicopathologic and radiographic analysis of 10 patients. Cancer 98:2232–2244

    Article  PubMed  Google Scholar 

  35. Tihan T, Burger PC (2016) Ependymoma. In: Kleinschmidt-deMasters BK, Rodriguez FJ, Tihan T (eds) Diagnostic pathology neuropathology, 2 edn. Elsevier, Inc, Salt Lake City

    Google Scholar 

  36. Louis DN, Perry A, Reifenberger G et al (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131:803–820

    Article  Google Scholar 

  37. Liu Z, Li J, Liu Z et al (2014) Supratentorial cortical ependymoma: case series and review of the literature. Neuropathology 34:243–252

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the following individuals for their comments regarding pathological diagnosis: Takashi Komori, Makoto Shibuya, Hiroyoshi Suzuki, and Shinya Tanaka. The authors also thank Tomio Honma and Toshinori Nagai for their excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsushi Sasaki.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sasaki, A., Hirato, J., Hirose, T. et al. Review of ependymomas: assessment of consensus in pathological diagnosis and correlations with genetic profiles and outcome. Brain Tumor Pathol 36, 92–101 (2019). https://doi.org/10.1007/s10014-019-00338-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10014-019-00338-x

Keywords

Navigation