Log in

A New Gradient Projection Algorithm for Convex Minimization Problem and its Application to Split Feasibility Problem

  • Original Article
  • Published:
Vietnam Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we study convergence analysis of a new gradient projection algorithm for solving convex minimization problems in Hilbert spaces. We observe that the proposed gradient projection algorithm weakly converges to a minimum of convex function f which is defined from a closed and convex subset of a Hilbert space to \(\mathbb {R}\). Also, we give a nontrivial example to illustrate our result in an infinite dimensional Hilbert space. We apply our result to solve the split feasibility problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agarwal, R.P., O’Regan, D., Sahu, D.R.: Fixed Point Theory for Lipschitzian-Type Map**s with Applications. Topological Fixed Point Theory and Its Applications, vol. 6. Springer, New York (2009)

    MATH  Google Scholar 

  2. Baillon, J. -B., Haddad, G.: Quelques propriétés des opérateurs angle-bornés et n-cycliquement monotones. Isr. J. Math. 26, 137–150 (1977)

    Article  Google Scholar 

  3. Bosede, A.O.: Strong convergence of Noor iteration for a general class of functions. Bull. Math. Anal. Appl. 3(4), 140–145 (2011)

    MathSciNet  MATH  Google Scholar 

  4. Brezis, H.: Operateurs Maximaux Monotones Et Semi-Groupes De Contractions Dans Les Espaces De Hilbert. North-Holland Mathematics Studies, vol. 5. North-Holland, Amsterdam (1973)

  5. Byrne, C.: Iterative oblique projection onto convex sets and the split feasibility problem. Inverse Probl 18, 441 (2002)

    Article  MathSciNet  Google Scholar 

  6. Byrne, C.: A unified treatment of some iterative algorithms in signal processing and image reconstruction. Inverse Probl. 20, 103 (2003)

    Article  MathSciNet  Google Scholar 

  7. Ceng, L.-C., Guu, S.-M., Yao, J.-C.: Hybrid methods with regularization for minimization problems and asymptotically strict pseudocontractive map**s in the intermediate sense. J. Glob. Optim. 60, 617–634 (2014)

    Article  MathSciNet  Google Scholar 

  8. Censor, Y., Elfving, T.: A multiprojection algorithm using Bregman projections in a product space. Numer. Algo. 8, 221–239 (1994)

    Article  MathSciNet  Google Scholar 

  9. Censor, Y., Bortfeld, T., Martin, B., Trofimov, A.: A unified approach for inversion problems in intensity-modulated radiation therapy. Phys. Med. Biol. 51, 2353 (2006)

    Article  Google Scholar 

  10. Censor, Y., Elfving, T., Kopf, N., Bortfeld, T.: The multiple-sets split feasibility problem and its applications for inverse problems. Inverse Probl. 21, 2071 (2005)

    Article  MathSciNet  Google Scholar 

  11. Censor, Y., Motova, A., Segal, A.: Perturbed projections and subgradient projections for the multiple-sets split feasibility problem. J. Math. Anal. Appl. 327, 1244–1256 (2007)

    Article  MathSciNet  Google Scholar 

  12. Censor, Y., Segal, A.: Iterative projection methods in biomedical inverse problems. In: Pubblicazioni del Centro De Giorgi. Proceedings of the Interdisciplinary Workshop on Mathematical Methods in Biomedical Imaging and Intensity-Modulated Radiation Therapy (IMRT), Pisa, Italy (2007)

  13. Chugh, R., Kumar, V.: Data dependence of Noor and SP iterative schemes when dealing with quasi-contractive operators. Int. J. Comput. Appl. 40(15), 41–46 (2011)

    Google Scholar 

  14. Combettes, P.L.: Solving monotone inclusions via compositions of nonexpansive averaged operators. Optimization 53, 475–504 (2004)

    Article  MathSciNet  Google Scholar 

  15. Dunn, J.C.: Global and asymptotic convergence rate estimates for a class of projected gradient processes. SIAM J. Control Optim. 19, 368–400 (1981)

    Article  MathSciNet  Google Scholar 

  16. Goebel, K., Kirk, W.A.: Topics in Metric Fixed Point Theory. Cambridge Studies in Advanced Mathematics, vol. 28. Cambridge University Press, Cambridge (1990)

    Book  Google Scholar 

  17. Goldstein, A.A.: Convex programming in Hilbert space. Bull. Amer. Math. Soc. 70, 709–710 (1964)

    Article  MathSciNet  Google Scholar 

  18. Jeong, J.-U., Noor, M.-A., Rafig, A.: Noor iterations for nonlinear Lipschitzian strongly accretive map**s. Pure Appl. Math. 11, 337–348 (2004)

    MathSciNet  MATH  Google Scholar 

  19. Khan, A.R., Domlo, A.-A., Fukhar-ud-din, H.: Common fixed points Noor iteration for a finite family of asymptotically quasi-nonexpansive map**s in Banach spaces. J. Math. Anal. Appl. 341, 1–11 (2008)

    Article  MathSciNet  Google Scholar 

  20. Levitin, E.S., Polyak, B.T.: Constrained minimization methods. Zh. Vychisl. Mat. Mat. Fiz. 6, 787–823 (1966)

    MATH  Google Scholar 

  21. López, G., Martín-márquez, V., Wang, F., Xu, H.-K.: Solving the split feasibility problem without prior knowledge of matrix norms. Inverse Probl. 28, 085004 (2012)

    Article  MathSciNet  Google Scholar 

  22. Luo, Z.-Q., Tseng, P.: On the linear convergence of descent methods for convex essentially smooth minimization. SIAM J. Control Optim. 30, 408–425 (1991)

    Article  MathSciNet  Google Scholar 

  23. Martinez-Yanes, C., Xu, H.-K.: Strong convergence of the CQ method for fixed point iteration processes. Nonlinear Anal. Theory Methods Appl. 64, 2400–2411 (2006)

    Article  MathSciNet  Google Scholar 

  24. Noor, M.A.: New approximation schemes for general variational inequalities. J. Math. Anal. Appl. 251, 217–229 (2000)

    Article  MathSciNet  Google Scholar 

  25. Noor, M.A.: New extragradient-type methods for general variational inequalities. J. Math. Anal. Appl. 277, 379–394 (2003)

    Article  MathSciNet  Google Scholar 

  26. Olatinwo, M.O.: A generalization of some convergence results using the Jungck–Noor three-step iteration process in arbitrary Banach space. Fasc. Math. 40, 37–43 (2008)

    MathSciNet  MATH  Google Scholar 

  27. Opial, Z.: Weak convergence of the sequence of successive approximations for nonexpansive map**s. Bull. Amer. Math. Soc. 73, 591–597 (1967)

    Article  MathSciNet  Google Scholar 

  28. Rashwan, R.A., Hammad, H.A.: Stability and strong convergence results for random Jungck–Kirk–Noor iterative scheme. Fasc. Math. 58, 167–182 (2017)

    MathSciNet  MATH  Google Scholar 

  29. Suantai, S.: Weak and strong convergence criteria of Noor iterations for asymptotically nonexpansive map**s. J. Math. Anal. Appl. 311, 506–517 (2005)

    Article  MathSciNet  Google Scholar 

  30. Takahashi, W., Xu, H.-K., Yao, J.-C.: Iterative methods for generalized split feasibility problems in Hilbert spaces. Set-valued Var. Anal. 23, 205–221 (2015)

    Article  MathSciNet  Google Scholar 

  31. Tian, M., Liu, L.: General iterative methods for equilibrium and constrained convex minimization problem. Optimization 63, 1367–1385 (2014)

    Article  MathSciNet  Google Scholar 

  32. Wang, C., **u, N.: Convergence of the gradient projection method for generalized convex minimization. Comput. Optim. Appl. 16, 111–120 (2000)

    Article  MathSciNet  Google Scholar 

  33. Wang, J., Hu, Y., Li, C., Yao, J. -C.: Linear convergence of CQ algorithms and applications in gene regulatory network inference. Inverse Probl. 33, 055017 (2017)

    Article  MathSciNet  Google Scholar 

  34. Wang, J., Hu, Y., Yu, C.K.W., Zhuang, X.: A family of projection gradient methods for solving the multiple-sets split feasibility problem. J. Optim. Theory Appl. 183, 520–534 (2019)

    Article  MathSciNet  Google Scholar 

  35. Xu, H.-K.: Averaged map**s and the gradient-projection algorithm. J. Optim. Theory Appl. 150, 360–378 (2011)

    Article  MathSciNet  Google Scholar 

  36. Yao, Y., Postolache, M., Liou, Y.-C.: Strong convergence of a self-adaptive method for the split feasibility problem. Fixed Point Theory Appl. 2013, 201 (2013)

    Article  MathSciNet  Google Scholar 

  37. Zhou, H., Wang, P.: A simpler explicit iterative algorithm for a class of variational inequalities in Hilbert spaces. J. Optim. Theory Appl. 161, 716–727 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors is very grateful to the referees for their valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Müzeyyen Ertürk.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ertürk, M., Kızmaz, A. A New Gradient Projection Algorithm for Convex Minimization Problem and its Application to Split Feasibility Problem. Vietnam J. Math. 50, 29–44 (2022). https://doi.org/10.1007/s10013-020-00463-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10013-020-00463-7

Keywords

Mathematics Subject Classification (2010)

Navigation