Log in

Thiourea aldehyde resin-based carbon/graphene composites for high-performance supercapacitors

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Thiourea aldehyde resin-based heteroatom do** carbon and graphene composites (RHDC/GN) were prepared by an in situ polymerization and carbonization. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images showed that thiourea aldehyde resin deposited on lamellar GO flakes during the polymerization and RHDC/GN composites had a hierarchical structure. The specific capacitance of the RHDC/GN composites was high up to 355 F g−1, much higher than that of the pure thiourea aldehyde resin-based heteroatom do** carbon (RHDC) with specific capacitance of 135 F g−1 at a current density of 1.0 A g−1 in 6-M KOH electrolyte. And the hetroatoms in RHDC/GN composites increase the specific capacitance, and GN enhances the conductivity of the electrodes which is beneficial to improving electrochemical cycling stability of the electrode significantly. The specific capacitance retains 90.97% after 5000 charge-discharge processes at 10 A g−1, which provides potential as supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Choi H-J, Jung S-M, Seo J-M, Chang DW, Dai L, Baek J-B (2012) Graphene for energy conversion and storage in fuel cells and supercapacitors. Nano Energy 1:534–551

    Article  CAS  Google Scholar 

  2. Liu M, Qian J, Zhao Y, Zhu D, Gan L, Chen L (2015) Core–shell ultramicroporous@microporous carbon nanospheres as advanced supercapacitor electrodes. J Mater Chem A 3:11517–11526

    Article  CAS  Google Scholar 

  3. Zhang X, Lai Y, Ge M, Zheng Y, Zhang K, Lin Z (2015) Fibrous and flexible supercapacitors comprising hierarchical nanostructures with carbon spheres and graphene oxide nanosheets. J Mater Chem A 3:13577

    Article  CAS  Google Scholar 

  4. Liu M, Miao YE, Zhang C, Tjiu WW, Yang Z, Peng H, Liu T (2013) Hierarchical composites of polyaniline-graphene nanoribbons-carbon nanotubes as electrode materials in all-solid-state supercapacitors. Nano 5:7312–7320

    CAS  Google Scholar 

  5. Piwek J, Platek A, Fic K, Frackowiak E (2016) Carbon-based electrochemical capacitors with acetate aqueous electrolytes. Electrochim Acta 215:179–186

    Article  CAS  Google Scholar 

  6. Yan J, Wang Q, Wei T, Fan Z (2014) Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv Energy Mater 4:1300816

    Article  Google Scholar 

  7. Li Y, Ni X, Ding S (2015) High performance resistive switching memory organic films prepared through PPy growing on graphene oxide substrate. J Mater Sci Mater Electron 26:9001–9009

    Article  CAS  Google Scholar 

  8. Salanne M, Rotenberg B, Naoi K, Kaneko K, Taberna PL, Grey CP, Dunn B, Simon P (2016) Efficient storage mechanisms for building better supercapacitors. Nature Energy 1:16070

    Article  CAS  Google Scholar 

  9. Fan Z, Yan J, Wei T, Zhi L, Ning G, Li T, Wei F (2011) Asymmetric supercapacitors based on graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density. Adv Funct Mater 21:2366–2375

    Article  CAS  Google Scholar 

  10. Salunkhe RR, Hsu SH, Wu KC, Yamauchi Y (2014) Large-scale synthesis of reduced graphene oxides with uniformly coated polyaniline for supercapacitor applications. ChemSusChem 7:1551–1556

    Article  CAS  Google Scholar 

  11. Huang HS, Chang KH, Suzuki N, Yamauchi Y, Hu CC, Wu KC (2013) Evaporation-induced coating of hydrous ruthenium oxide on mesoporous silica nanoparticles to develop high-performance supercapacitors. Small 9:2520–2526

    Article  CAS  Google Scholar 

  12. Bastakoti BP, Oveisi H, Hu C-C, Wu KCW, Suzuki N, Takai K, Kamachi Y, Imura M, Yamauchi Y (2013) Mesoporous carbon incorporated with In2O3 nanoparticles as high-performance supercapacitors. Eur J Inorg Chem 7:1109–1112

    Article  Google Scholar 

  13. Chaikittisilp W, Hu M, Wang H, Huang HS, Fujita T, Wu KC, Chen LC, Yamauchi Y, Ariga K (2012) Nanoporous carbons through direct carbonization of a zeolitic imidazolate framework for supercapacitor electrodes. Chem Commun 48:7259–7261

    Article  CAS  Google Scholar 

  14. Bastakoti BP, Kamachi Y, Huang H-S, Chen L-C, Wu KCW, Yamauchi Y (2013) Hydrothermal synthesis of binary Ni-Co hydroxides and carbonate hydroxides as pseudosupercapacitors. Eur J Inorg Chem 1:39–43

    Article  Google Scholar 

  15. Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41:797–828

    Article  CAS  Google Scholar 

  16. Senokos E, Reguero V, Palma J, Vilatla JJ, Rebeca M (2016) Macroscopic fibres of CNTs as electrodes for multifunctional electric double layer capacitors: from quantum capacitance to device performance. Nano 8:3620–3628

    CAS  Google Scholar 

  17. Sun W, Lipka SM, Swartz C, Williams D, Yang F (2016) Hemp-derived activated carbons for supercapacitors. Carbon 103:181–192

    Article  CAS  Google Scholar 

  18. Jena A, Munichandraiah N, Shivashankar SA (2013) Carbonaceous nickel oxide nano-composites: as electrode materials in electrochemical capacitor applications. J Power Sources 237:156–166

    Article  CAS  Google Scholar 

  19. Salunkhe RR, Kamachi Y, Torad NL, Hwang SM, Sun Z, Dou SX, Kim JH, Yamauchi Y (2014) Fabrication of symmetric supercapacitors based on MOF-derived nanoporous carbons. J Mater Chem A 2:19848–19854

    Article  CAS  Google Scholar 

  20. Tang J, Yamauchi Y (2016) Carbon materials: MOF morphologies in control. Nat Chem 8:638–639

    Article  CAS  Google Scholar 

  21. Salunkhe RR, Young C, Tang J, Takei T, Ide Y, Kobayashi N, Yamauchi Y (2016) A high-performance supercapacitor cell based on ZIF-8-derived nanoporous carbon using an organic electrolyte. Chem Commun 52:4764–4767

    Article  CAS  Google Scholar 

  22. Salunkhe RR, Kaneti YV, Kim J, Kim JH, Yamauchi Y (2016) Nanoarchitectures for metal-organic framework-derived nanoporous carbons toward supercapacitor applications. Acc Chem Res 49:2796–2806

    Article  CAS  Google Scholar 

  23. Tran C, Kalra V (2013) Fabrication of porous carbon nanofibers with adjustable pore sizes as electrodes for supercapacitors. J Power Sources 235:289–296

    Article  CAS  Google Scholar 

  24. Fan Z, Liu Y, Yan J, Ning G, Wang Q, Wei T, Zhi L, Wei F (2012) Template-directed synthesis of pillared-porous carbon nanosheet architectures: high-performance electrode materials for supercapacitors. Adv Energy Mater 2:419–424

    Article  CAS  Google Scholar 

  25. Zhong C, Gong S, Le J, Li P, Cao Q (2015) Preparation of nitrogen-doped pitch-based carbon materials for supercapacitors. Mater Lett 156:1–6

    Article  CAS  Google Scholar 

  26. Yan X, Yu Y, Yang X (2014) Effects of electrolytes on the capacitive behavior of nitrogen/phosphorus co-doped nonporous carbon nanofibers: an insight into the role of phosphorus groups. RSC Adv 4:24986

    Article  CAS  Google Scholar 

  27. Shao Y, Sui J, Yin G, Gao Y (2008) Nitrogen-doped carbon nanostructures and their composites as catalytic materials for proton exchange membrane fuel cell. Appl Catal B Environ 79:89–99

    Article  CAS  Google Scholar 

  28. Dutta S, Huang SY, Chen C, Chen JE, Alothman ZA, Yamauchi Y, Hou CH, Wu KC (2016) Cellulose framework directed construction of hierarchically porous carbons offering high-performance capacitive deionization of brackish water. ACS Sustain Chem Eng 4:1885–1893

    Article  CAS  Google Scholar 

  29. Liu NL, Dutta S, Salunkhe RR, Ahamad T, Alshehri SM, Yamauchi Y, Hou CH, Wu KC (2016) ZIF-8 derived, nitrogen-doped porous electrodes of carbon polyhedron particles for high-performance electrosorption of salt ions. Sci Rep 6:28847

    Article  CAS  Google Scholar 

  30. Wang Y, Yan X, Tu M, Cheng J, Zhang J (2017) Resin-derived activated carbons with in-situ nitrogen do** and high specific surface area for high-performance supercapacitors. Mater Lett 191:178–181

    Article  CAS  Google Scholar 

  31. Zhou J, Shen H, Li Z, Zhang S, Zhao Y, Bi X, Wang Y, Cui H, Zhuo S (2016) Porous carbon materials with dual N, S-do** and uniform ultra-microporosity for high performance supercapacitors. Electrochim Acta 209:557–564

    Article  CAS  Google Scholar 

  32. Zhang D, Zhao J, Feng C, Zhao R, Sun Y, Guan T, Han B, Tang N, Wang J, Li K, Qiao J, Zhang J (2017) Scalable synthesis of hierarchical macropore-rich activated carbon microspheres assembled by carbon nanoparticles for high rate performance supercapacitors. J Power Sources 342:363–370

    Article  CAS  Google Scholar 

  33. Song Z, Xu T, Gordin ML, Jiang YB, Bae IT, **ao Q, Zhan H, Liu J, Wang D (2012) Polymer-graphene nanocomposites as ultrafast-charge and -discharge cathodes for rechargeable lithium batteries. Nano Lett 12:2205–2211

    Article  CAS  Google Scholar 

  34. Zhang LL, Zhou R, Zhao XS (2010) Graphene-based materials as supercapacitor electrodes. J Mater Chem 20:5983

    Article  CAS  Google Scholar 

  35. Liu P, Huang Y, Wang L (2013) Ordered mesoporous carbon-reduced graphene oxide composites decorating with Ag nanoparticles for surface enhanced Raman scattering. Mater Lett 97:173–176

    Article  CAS  Google Scholar 

  36. Song Y, Yang J, Wang K, Haller S, Wang Y, Wang C, **a Y (2016) In-situ synthesis of graphene/nitrogen-doped ordered mesoporous carbon nanosheet for supercapacitor application. Carbon 96:955–964

    Article  CAS  Google Scholar 

  37. Song Y, Li Z, Guo K, Shao T (2016) Hierarchically ordered mesoporous carbon/graphene composites as supercapacitor electrode materials. Nano 8:15671–15680

    CAS  Google Scholar 

  38. Li Y, Wu Y (2009) Coassembly of graphene oxide and nanowires for large-area nanowire alignment. J Am Chem Soc 131:5851–5857

    Article  CAS  Google Scholar 

  39. Zhu C, Guo S, Fang Y, Dong S (2010) Reducing sugar: new functional molecules for the green synthesis of graphene nanosheets. ACS Nano 4:2429–2437

    Article  CAS  Google Scholar 

  40. Zhang Y, Li M, Yang L, Yi K, Li Z, Yao J (2014) Facilely prepared polypyrrole-graphene oxide-sodium dodecylbenzene sulfonate nanocomposites by in situ emulsion polymerization for high-performance supercapacitor electrodes. J Solid State Electrochem 18:2139–2147

    Article  CAS  Google Scholar 

  41. Tsubota T, Takenaka K, Murakami N, Ohno T (2011) Performance of nitrogen- and sulfur-containing carbon material derived from thiourea and formaldehyde as electrochemical capacitor. J Power Sources 196:10455–10460

    Article  CAS  Google Scholar 

  42. Li M, Zhang Y, Yang L, Liu Y, Yao J (2015) Hollow melamine resin-based carbon spheres/graphene composite with excellent performance for supercapacitors. Electrochim Acta 166:310–319

    Article  CAS  Google Scholar 

  43. Fuertes AB, Alvarez S (2004) Graphitic mesoporous carbons synthesised through mesostructured silica templates. Carbon 42:3049–3055

    Article  CAS  Google Scholar 

  44. Tran NQ, Kang BK, Woo MH, Yoon DH (2016) Enrichment of pyrrolic nitrogen by hole defects in nitrogen and sulfur co-doped graphene hydrogel for flexible supercapacitors. ChemSusChem 9:2261–2268

    Article  CAS  Google Scholar 

  45. Wang S, Gai L, Jiang H, Guo Z, Bai N, Zhou J (2015) Reduced graphene oxide grafted by the polymer of polybromopyrroles for nanocomposites with superior performance for supercapacitors. J Mater Chem A 42:21257–21568

    Article  Google Scholar 

  46. Kaufman JH, Metin S, Saperstein DD (1989) Symmetry breaking in nitrogen-doped amorphous carbon: infrared observation of the Raman-active G and D bands. Phys Rev B Condens Matter 18:13053–13060

    Article  Google Scholar 

  47. Sadezky A, Muckenhuber H, Grothe H, Niessner R, Pöschl U (2005) Raman microspectroscopy of soot and related carbonaceous materials: spectral analysis and structural information. Carbon 8:1731–1742

    Article  Google Scholar 

  48. Wang S, Gai L, Zhou J, Jiang H, Sun Y, Zhang H (2015) Thermal cyclodebromination of polybromopyrroles to polymer with high performance for supercapacitor. J Phys Chem C 8:3881–3891

    Article  Google Scholar 

  49. Fechler N, Fellinger T-P, Antonietti M (2013) One-pot synthesis of nitrogen–sulfur-co-doped carbons with tunable composition using a simple isothiocyanate ionic liquid. J Mater Chem A 1:14097

    Article  CAS  Google Scholar 

  50. **a Y, Zhu Y, Tang Y (2012) Preparation of sulfur-doped microporous carbons for the storage of hydrogen and carbon dioxide. Carbon 50:5543–5553

    Article  CAS  Google Scholar 

  51. Paraknowitsch JP, Thomas A, Schmidt J (2011) Microporous sulfur-doped carbon from thienyl-based polymer network precursors. Chem Commun 47:8283–8285

    Article  CAS  Google Scholar 

  52. Paraknowitsch JP, Zhang J, Su D, Thomas A, Antonietti M (2010) Ionic liquids as precursors for nitrogen-doped graphitic carbon. Adv Mater 22:87–92

    Article  CAS  Google Scholar 

  53. Xu G, Ding B, Nie P, Shen L, Wang J, Zhang X (2013) Porous nitrogen-doped carbon nanotubes derived from tubular polypyrrole for energy-storage applications. Chemistry 19:12306–12312

    Article  CAS  Google Scholar 

  54. Su YS, Manthiram A (2012) Lithium-sulphur batteries with a microporous carbon paper as a bifunctional interlayer. Nat Commun 3:1166

    Article  Google Scholar 

  55. Liu JH, An JW, Ma YX, Li ML, Ma RB (2012) Synthesis of a graphene-polypyrrole nanotube composite and its application in supercapacitor electrode. J Electrochem Soc 159:A828–A833

    Article  CAS  Google Scholar 

  56. Cho KT, Lee SB, Lee JW (2014) Facile synthesis of highly electrocapacitive nitrogen-doped graphitic porous carbons. J Phys Chem C 118:9357–9367

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the first batch of Natural Science Foundation of Shandong Province (ZR2015BM001) and the Doctoral Startup Foundation of Qilu University of Technology (12042826).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mei Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, C., Yang, X., **ang, S. et al. Thiourea aldehyde resin-based carbon/graphene composites for high-performance supercapacitors. J Solid State Electrochem 22, 113–121 (2018). https://doi.org/10.1007/s10008-017-3733-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3733-x

Keywords

Navigation