Log in

Green synthesis of heterocyclic alkenes using MCM 41 supported perchloric acid catalytic system: characterization and DFT studies

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Context

In this work, a series of heterocyclic alkenes were prepared by the reaction of 2-hydroxy-1-naphthaldehyde with various heterocyclic active methylene compounds via Knoevenagel condensation reaction using mesoporous silica, MCM 41, supported perchloric acid as an efficient green catalytic system under solvent-free conditions. A comparative study of the conventional method vs the green method was also reported with the same raw materials. 1H NMR, 13C NMR, IR, and mass spectroscopic techniques were used for the characterization of synthesized compounds.

Methods

Computational study was performed for these compounds by applying density functional theory (DFT) at M06 functional and 6-311G (d,p) basis set to interpret the electronic structures and counter check the experimental findings. The frequency analysis with aforementioned levels of DFT was performed to confirm the stability associated with optimized geometries. The true minimum for the optimized geometries for 1, 2, and 3 was achieved as indicated by the absence of negative eigenvalues in all the calculated frequencies. Additionally, natural bond orbitals (NBOs) and nonlinear optical (NLO) properties were explored utilizing the aforementioned level and basis set combination via DFT, whereas the frontier molecular orbitals (FMOs) evaluation was done at time-dependent density functional theory TDDFT at M06/6-311G(d,p). The global reactivity parameters were also calculated using the FMO data. These computation-based outcomes were found in good agreement with the experimental findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Scheme 3
Fig. 2

Similar content being viewed by others

References

  1. Anastas PT, Warner JC (1998) Green Chemistry: Theory and Practice. Oxford Univ Press, Oxford, p 160

    Google Scholar 

  2. Tarannum S, Siddiqui ZN (2015) Fe (OTs)3/SiO2: a novel catalyst for the multicomponent synthesis of dibenzodiazepines under solvent-free conditions. RSC Adv 5(91):74242–74250. https://doi.org/10.1039/C5RA12085C

    Article  CAS  Google Scholar 

  3. Vidyacharan S, Shinde AH, Satpathi B, Sharada DS (2014) A facile protocol for the synthesis of 3-aminoimidazo-fused heterocycles via the Groebke-Blackburn-Bienayme reaction under catalyst-free and solvent-free conditions. Green Chem 16(3):1168–1175. https://doi.org/10.1039/C3GC42130A

    Article  CAS  Google Scholar 

  4. Kokel A, Schäfer C, Török B (2017) Application of microwave-assisted heterogeneous catalysis in sustainable synthesis design. Green Chem 19(16):3729–3751

    Article  CAS  Google Scholar 

  5. Siddiqui ZN, Khan K, Ahmed N (2014) Nano fibrous silica sulphuric acid as an efficient catalyst for the synthesis of β-enaminone. Catal Lett 144(4):623–632. https://doi.org/10.1007/s10562-013-1190-4

    Article  CAS  Google Scholar 

  6. Tale RH, Rodge AH, Hatnapure GD, Keche AP (2011) The novel 3, 4-dihydropyrimidin-2 (1H)-one urea derivatives of N-aryl urea: synthesis, anti-inflammatory, antibacterial and antifungal activity evaluation. Bioorg Med Chem Lett 21(15):4648–4651. https://doi.org/10.1016/j.bmcl.2011.03.062

    Article  CAS  PubMed  Google Scholar 

  7. Ghorab MM, El-Gazzar MG, Alsaid MS (2014) Synthesis, characterization and anti-breast cancer activity of new 4-aminoantipyrine-based heterocycles. Int J Mol Sci 15(5):7539–7553. https://doi.org/10.3390/ijms15057539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kim J, Park C, Ok T, So W, Jo M, Seo M, Kim Y, Sohn JH, Park Y, Ju MK, Kim J (2012) Discovery of 3, 4-dihydropyrimidin-2 (1H)-ones with inhibitory activity against HIV-1 replication. Bioorg Med Chem Lett 22(5):2119–2124. https://doi.org/10.1016/j.bmcl.2011.12.090

    Article  CAS  PubMed  Google Scholar 

  9. Ellis GP, Becket GJ, Shaw D, Wilson HK, Vardey CJ, Skidmore IF (1978) Benzopyrones. 14. Synthesis and anti-allergic properties of some N-tetrazolylcarboxamides and related compounds. J Med Chem 21(11):1120–1126. https://doi.org/10.1021/jm00209a006

    Article  CAS  PubMed  Google Scholar 

  10. Chen YF, Wu SN, Gao JM, Liao ZY, Tseng YT, Fülöp F, Chang FR, Lo YC (2020) The antioxidant, anti-inflammatory, and neuroprotective properties of the synthetic chalcone derivative. AN07. Molecules 25(12):2907. https://doi.org/10.3390/molecules25122907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Thapa P, Upadhyay SP, Suo WZ, Singh V, Gurung P, Lee ES, Sharma R, Sharma M (2021) Chalcone and its analogs: therapeutic and diagnostic applications in Alzheimer’s disease. Bioorg Chem 108:104681. https://doi.org/10.1016/j.bioorg.2021.104681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hałdys K, Latajka R (2019) Thiosemicarbazones with tyrosinase inhibitory activity. Med Chem Comm 10(3):378–389. https://doi.org/10.1039/C9MD00005D

    Article  Google Scholar 

  13. Siddiqui ZN, Ahmed N, Farooq F, Khan K (2013) Highly efficient solvent-free synthesis of novel pyranyl pyridine derivatives via β-enaminones using ZnO nanoparticles. Tetrahedron Lett 54(28):3599–3604. https://doi.org/10.1016/j.tetlet.2013.04.072

    Article  CAS  Google Scholar 

  14. Dong DJ, Li HH, Tian SK (2010) A highly tuneable stereo selective olefination of semi stabilized triphenylphosphonium ylides with N-sulfonyl imines. J Am Chem Soc 132(14):5018–5020. https://doi.org/10.1021/ja910238f

    Article  CAS  PubMed  Google Scholar 

  15. Kim S, Seus P, Meier H (2004) Synthesis of tetrastilbenylmethanes by Wittig–Horner reactions. Eur J Org Chem 2004(8):1761–1764. https://doi.org/10.1002/ejoc.200300707

    Article  CAS  Google Scholar 

  16. Kofoed J, Reymond JL, Darbre T (2005) Prebiotic carbohydrate synthesis: zinc–proline catalyzes direct aqueous aldol reactions of α-hydroxy aldehydes and ketones. Org Biomol Chem 3(10):1850–1855. https://doi.org/10.1039/B501512J

    Article  CAS  PubMed  Google Scholar 

  17. Reddy K, Raja Sekhar CV, Krishna GG (2007) Zinc–proline complex: an efficient, reusable catalyst for direct nitroaldol reaction in aqueous media. Synthetic Commun 37(12):1971–1976. https://doi.org/10.1080/00397910701354731

    Article  CAS  Google Scholar 

  18. Assadi N, Pogodin S, Agranat I (2011) Peterson olefination: unexpected rearrangement in the overcrowded polycyclic aromatic ene series. Eur J Org Chem 2011:6773–6780. https://doi.org/10.1002/ejoc.201100789

    Article  CAS  Google Scholar 

  19. Blakemore PR (2002) The modified Julia olefination: alkene synthesis via the condensation of metallated heteroarylalkylsulfones with carbonyl compounds. J Chem Soc Perkin Trans 1(23):2563–2585. https://doi.org/10.1039/B208078H

    Article  Google Scholar 

  20. Abraham S, Sundararajan G (2006) Investigation of the active species in a Michael addition promoted by chirally modified tetrahydroborate. Tetrahedron 62(7):1474–1478. https://doi.org/10.1016/j.tet.2005.11.023

    Article  CAS  Google Scholar 

  21. Kidwai M, Jain A, Poddar R, Bhardwaj S (2011) Bis [(L) prolinato-N, O] Zn in acetic acid–water: a novel catalytic system for the synthesis of β-amino carbonyls via Mannich reaction at room temperature. Appl Organomet Chem 25(5):335–340. https://doi.org/10.1002/aoc.1764

    Article  CAS  Google Scholar 

  22. Ryabukhin SV, Plaskon AS, Volochnyuk DM, Pipko SE, Shivanyuk AN, Tolmachev AA (2007) Combinatorial Knoevenagel reactions. J Comb Chem 9(6):1073–1078. https://doi.org/10.1021/cc070073f

    Article  CAS  PubMed  Google Scholar 

  23. Siddiqui ZN, Khan T (2013) P2O5/SiO2 as an efficient heterogeneous catalyst for the synthesis of heterocyclic alkene derivatives under thermal solvent-free conditions. Catal. Sci Technol 3(8):2032–2043. https://doi.org/10.1039/C3CY00095H

    Article  CAS  Google Scholar 

  24. Kumar SV, Banerjee S, Punniyamurthy T (2020) Transition metal-catalyzed coupling of heterocyclic alkenes via C–H functionalization: recent trends and applications. Org Chem Front 7(12):1527–1569. https://doi.org/10.1039/D0QO00279H

    Article  Google Scholar 

  25. Sans V, Gelat F, Karbass N, Burguete MI, García-Verdugo E, Luis SV (2010) Polymer cocktail: a multitask supported ionic liquid-like species to facilitate multiple and consecutive C=C coupling reactions. Adv Synth Catal 352(17):3013–3021. https://doi.org/10.1002/adsc.201000528

    Article  CAS  Google Scholar 

  26. Fournier D, Hoogenboom R, Schubert US (2007) Clicking polymers: a straightforward approach to novel macromolecular architectures. Chem Soc Rev 36(8):1369–1380. https://doi.org/10.1039/B700809K

    Article  CAS  PubMed  Google Scholar 

  27. Parida KM, Rath D (2009) Amine functionalized MCM-41: an active and reusable catalyst for Knoevenagel condensation reaction. J Mol Catal A Chem 310(1-2):93–100. https://doi.org/10.1016/j.molcata.2009.06.001

    Article  CAS  Google Scholar 

  28. Grün M, Lauer I, Unger KK (1997) The synthesis of micrometer- and submicrometer-size spheres of ordered mesoporous oxide MCM-41. Adv Mater 9(3):254–257. https://doi.org/10.1002/adma.19970090317

    Article  Google Scholar 

  29. Kyriakopoulos J, Papastavrou AT, Panagiotou GD, Tzirakis MD, Triantafyllidis KS, Alberti MN, Bourikas K, Kordulis C, Orfanopoulos M, Lycourghiotis A (2014) Deposition of fullerene C60 on the surface of MCM-41 via the one-step wet impregnation method: active catalysts for the singlet oxygen mediated photooxidation of alkenes. J Mol Catal A Chem 381:9–15. https://doi.org/10.1016/j.molcata.2013.09.036

    Article  CAS  Google Scholar 

  30. Das D, Lee JF, Cheng S (2001) Sulfonic acid functionalized mesoporous MCM-41 silica as a convenient catalyst for Bisphenol-A synthesis. Chem Commun 21:2178–2179. https://doi.org/10.1039/B107155F

    Article  Google Scholar 

  31. Martins L, Hölderich W, Hammer P, Cardoso D (2010) Preparation of different basic Si–MCM-41 catalysts and application in the Knoevenagel and Claisen–Schmidt condensation reactions. J Catal 271(2):220–227. https://doi.org/10.1016/j.jcat.2010.01.015

    Article  CAS  Google Scholar 

  32. Wu C, Dong L, Onwudili J, Williams PT, Huang J (2013) Effect of Ni particle location within the mesoporous MCM-41 support for hydrogen production from the catalytic gasification of biomass. ACS Sustain Chem Eng 1(9):1083–1091. https://doi.org/10.1021/sc300133c

    Article  CAS  Google Scholar 

  33. Rostamizadeh S, Nojavan M, Aryan R, Isapoor E, Azad M (2013) Amino acid-based ionic liquid immobilized on α-Fe2O3-MCM-41: an efficient magnetic nano catalyst and recyclable reaction media for the synthesis of quinazolin-4 (3H)-one derivatives. J Mol Catal A Chem 374:102–110. https://doi.org/10.1016/j.molcata.2013.04.002

    Article  CAS  Google Scholar 

  34. Subramanian T, Kumarraja M, Pitchumani K (2012) Al-MCM-41 as a mild and ecofriendly catalyst for Michael addition of indole to α, β-unsaturated ketones. J Mol Catal A Chem 363:115–121. https://doi.org/10.1016/j.molcata.2012.05.024

    Article  CAS  Google Scholar 

  35. Ray S, Brown M, Bhaumik A, Dutta A, Mukhopadhyay C (2013) A new MCM-41 supported HPF 6 catalyst for the library synthesis of highly substituted 1, 4-dihydropyridines and oxidation to pyridines: report of one-dimensional packing towards LMSOMs and studies on their photophysical properties. Green Chem 15(7):1910–1924. https://doi.org/10.1039/C3GC40441B

    Article  CAS  Google Scholar 

  36. Khan K, Siddiqui ZN (2015) MCM-41 supported perchloric acid for efficient synthesis of 3, 4-dihydropyrimidin-2-(1H)-ones via Biginelli reaction. Monatshfür Chem 146(12):2097–2105. https://doi.org/10.1007/s00706-015-1468-x

    Article  CAS  Google Scholar 

  37. Shinde RA, Adole VA, Shinde RS, Desale BS, Jagdale BS (2022) Synthesis, antibacterial, antifungal and computational study of (E)-4-(3-(2, 3-dihydrobenzo [b][1, 4] dioxin-6-yl)-3-oxoprop-1-en-1-yl) benzonitrile. Results Chem 4:100553

    Article  CAS  Google Scholar 

  38. Shinde RA, Adole VA, Jagdale BS, Pawar TB (2020) Experimental and theoretical studies on the molecular structure, FT-IR, NMR, HOMO, LUMO, MESP, and reactivity descriptors of (E)-1-(2, 3-dihydrobenzo [b][1, 4] dioxin-6-yl)-3-(3, 4, 5-trimethoxyphenyl) prop-2-en-1-one. Mater Sci Res India 17:54–72

    Article  CAS  Google Scholar 

  39. Adole VA, More RA, Shinde RA, Dhonnar SL, Jagdale BS, Shinde SG, Patil AV, Pawar TB (2021) Spectroscopic (FTIR and UV), quantum chemical, antifungal and antioxidant investigations of (E)-7-(4-(trifluoromethyl) benzylidene)-1, 2, 6, 7-tetrahydro-8H-indeno [5, 4-b] furan-8-one: a combined experimental and theoretical study. Vietnam J Chem 59(5):689–700

    CAS  Google Scholar 

  40. Shinde RA, Adole VA, Jagdale BS (2022) Synthesis, computational, antibacterial and antifungal investigation of two tri-fluorinated chalcones of 1-(2, 3-dihydrobenzo [b][1, 4] dioxin-6-yl) ethan-1-one. Polycycl Aromat Compd 42(9):6155–6172. https://doi.org/10.1080/10406638.2021.1977346

    Article  CAS  Google Scholar 

  41. Shinde RA, Adole VA, Jagdale BS, Desale BS (2021) Synthesis, antibacterial and computational studies of Halo Chalcone hybrids from 1-(2, 3-dihydrobenzo [b][1, 4] dioxin-6-yl) ethan-1-one. J Indian Chem Soc 98(4):100051. https://doi.org/10.1016/j.jics.2021.100051

    Article  CAS  Google Scholar 

  42. Shinde RA, Adole VA, Jagdale BS (2021) Antimicrobial and computational investigation of two 2, 3-dihydro-1 H-inden-1-one derived fluorinated chalcone motifs. Vietnam J Chem 59(6):800–812

    CAS  Google Scholar 

  43. Günay N, Pir HA, Avcı D, Atalay Y (2013) NLO and NBO analysis of sarcosine-maleic acid by using HF and B3LYP calculations. J Chem 2013:1–16

    Article  Google Scholar 

  44. Khalid M, Ullah MA, Adeel M, Khan MU, Tahir MN, Braga AAC (2019) Synthesis, crystal structure analysis, spectral IR, UV–Vis, NMR assessments, electronic and nonlinear optical properties of potent quinoline based derivatives: interplay of experimental and DFT study. J Saudi Chem Soc 23(5):546–560. https://doi.org/10.1016/j.jscs.2018.09.006

    Article  CAS  Google Scholar 

  45. Khalid M, Lodhi HM, Khan MU, Imran M (2021) Structural parameter-modulated nonlinear optical amplitude of acceptor–π–D–π–donor-configured pyrene derivatives: a DFT approach. RSC Adv 11(23):14237–14250. https://doi.org/10.1039/D1RA00876E

    Article  CAS  Google Scholar 

  46. Khalid M, Khan MU, Hussain R, Irshad S, Ali B, Braga AAC, Imran M, Hussain A (2021) Exploration of second and third order nonlinear optical properties for theoretical framework of organic D–π–D–π–A type compounds. Opt Quantum Electron 53(10):1–9. https://doi.org/10.1007/s11082-021-03212-3

    Article  CAS  Google Scholar 

  47. Weinhold F, Landis CR (2005) Valency and bonding: a natural bond orbital donor-acceptor perspective. Cambridge University Press

    Google Scholar 

  48. Khalid M, Ali A, Rehman MF, Mustaqeem M, Ali S, Khan MU, Asim S, Ahmad N, Saleem M (2020) Exploration of noncovalent interactions, chemical reactivity, and nonlinear optical properties of piperidone derivatives: a concise theoretical approach. ACS Omega 5(22):13236–13249. https://doi.org/10.1021/acsomega.0c01273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Khalid M, Arshad MN, Murtaza S, Shafiq I, Haroon M, Asiri AM, de AlcântaraMorais SF, Braga AAC (2022) Enriching NLO efficacy via designing non-fullerene molecules with the modification of acceptor moieties into ICIF2F: an emerging theoretical approach. RSC Adv 12(21):13412–13427. https://doi.org/10.1039/D2RA01127A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Khalid M, Khan MU, Razia ET, Shafiq Z, Alam MM, Imran M, Akram MS (2021) Exploration of efficient electron acceptors for organic solar cells: rational design of indacenodithiophene based non-fullerene compounds. Sci Rep 11(1):1–5. https://doi.org/10.1038/s41598-021-99254-4

    Article  CAS  Google Scholar 

  51. Koopmans T (1934) Über die Zuordnung von Wellenfunktionen Und Eigenwerten Zu Den Einzelnen Elektronen Eines Atoms. Physica 1(1-6):104–113. https://doi.org/10.1016/S0031-8914(34)90011-2

    Article  Google Scholar 

  52. Pearson RG (1986) Absolute electronegativity and hardness correlated with molecular orbital theory. Proc Natl Acad Sci 83(22):8440–8441. https://doi.org/10.1073/pnas.83.22.8440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Parr RG, Pearson RG (1983) Absolute hardness: companion parameter to absolute electronegativity. J Am Chem Soc 105(26):7512–7516. https://doi.org/10.1021/ja00364a005

    Article  CAS  Google Scholar 

  54. Chattaraj PK, Roy DR (2007) Update 1 of: electrophilicity index. Chem Rev 107(9):46–74. https://doi.org/10.1021/cr078014b

    Article  CAS  Google Scholar 

  55. Khalid M, Ali A, Jawaria R, Asghar MA, Asim S, Khan MU, Hussain R, urRehman MF, Ennis CJ, Akram MS (2020) First principles study of electronic and nonlinear optical properties of A–D–π–A and D–A–D–π–A configured compounds containing novel quinoline–carbazole derivatives. RSC adv 10(37):22273–22283. https://doi.org/10.1039/D0RA02857F

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Khalid M, Khan MU, Shafiq I, Hussain R, Mahmood K, Hussain A, Jawaria R, Hussain A, Imran M, Assiri MA, Ali A (2021) NLO potential exploration for D–π–A heterocyclic organic compounds by incorporation of various π-linkers and acceptor units. Arab J Chem 14(8):103295. https://doi.org/10.1016/j.arabjc.2021.103295

    Article  CAS  Google Scholar 

  57. Khalid M, Khan MU, Shafiq I, Hussain R, Ali A, Imran M, Braga AAC, Fayyazur Rehman M, Akram MS (2021) Structural modulation of π-conjugated linkers in D–π–A dyes based on triphenylaminedicyanovinylene framework to explore the NLO properties R. Soc Open Sci 8(8):210570. https://doi.org/10.1098/rsos.210570

    Article  CAS  Google Scholar 

  58. Khalid M, Jawaria R, Khan MU, Braga AAC, Shafiq Z, Imran M, Zafar HM, Irfan A (2021) Synthesis, characterization, and DFT-based electronic and nonlinear optical properties of methyl 1-(arylsulfonyl)-2-aryl-1H-benzo[d]imidazole-6-carboxylates. ACS Omega 6(24):16058–16065. https://doi.org/10.1021/acsomega.1c01938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Khalid M, Ali A, De la Torre AF, Marrugo KP, Concepcion O, Kamal GM, Muhammad S, Al-Sehemi AG (2020) Facile synthesis, spectral (IR, mass, UV–Vis, NMR), linear and nonlinear investigation of the novel phosphonate compounds: a combined experimental and simulation study. Chemistry Select 5(10):2994–3006. https://doi.org/10.1002/slct.201904224

    Article  CAS  Google Scholar 

  60. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji HH, Li H, Caricato M, Marenich A, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA Jr., Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian, Inc., Wallingford CT, GaussView 5.0. Wallingford, E.U.A.

  61. Dennington RD, Keith TA, Millam JM (2008) GaussView 5.0. Gaussian Inc, Wallingford, p 20

    Google Scholar 

  62. O’boyle NM, Tenderholt AL, Langner KM (2008) Cclib: a library for package-independent computational chemistry algorithms. J Com Chem 29(5):839–845. https://doi.org/10.1002/jcc.20823

    Article  CAS  Google Scholar 

  63. Zhurko GA, Zhurko DA (2009) ChemCraft, version 1.6. URL http://www.chemcraftprog.com

  64. Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR (2012) Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J Chem Inform 4(1):1–7. https://doi.org/10.1186/1758-2946-4-17

    Article  CAS  Google Scholar 

  65. Zhao Y, Truhlar DG (2008) Construction of a generalized gradient approximation by restoring the density-gradient expansion and enforcing a tight Lieb–Oxford bound. J Chem Phys 128(18):184109. https://doi.org/10.1063/1.2912068

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

One of the authors Ms. Snigdha K would like to acknowledge CSIR (Council of Scientific and Industrial Research), New Delhi, India, for the financial assistance in the form of Junior Research Fellowship (File No: 08/738 (0001)/2019-EMR-I). The Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, Saudi Arabia, has funded this project, under grant no. (KEP-64-130-42).

Author information

Authors and Affiliations

Authors

Contributions

SK (conceptualization; methodology; formal analysis; investigation; writing—original draft), MMTN (conceptualization; methodology; formal analysis; investigation; supervision; writing—review and editing), AMA (resources, methodology, formal analysis, writing—review and editing), KAA-A (resources, methodology, formal analysis, writing—review and editing), MA (resources, methodology, formal analysis, writing—review and editing). All authors have read and agreed to the published version of the manuscript. 

Corresponding authors

Correspondence to Mohammed Musthafa T. N. or Mohammad Asad.

Ethics declarations

Ethical approval

Not acceptable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 1.53 MB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

K., S., T. N., M.M., Asiri, A.M. et al. Green synthesis of heterocyclic alkenes using MCM 41 supported perchloric acid catalytic system: characterization and DFT studies. J Mol Model 29, 244 (2023). https://doi.org/10.1007/s00894-023-05635-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-023-05635-z

Keywords

Navigation