Log in

Substitution effects on novel bicyclo[2.2.1]hepta-7-silylenes by DFT

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Substitution effects on stability (ΔΕs-t) of novel singlet and triplet forms of bicyclo[2.2.1]hepta-7-silylenes are compared and contrasted, at B3LYP/6–311++G** level of theory. All species appear as ground state minima on their energy surface, for showing no negative force constant. Singlets (1s-24s) are ground state and more stable than their corresponding triplets (1t-24t). The most stable scrutinized silylenes appear to be 2,3-disilabicyclo[2.2.1]hepta-7-silylene (9) for showing the highest value of ΔEs-t. This stability can be related to our imposed topology and β-silicon effect. The band gaps (ΔΕHOMO–LUMO) show the same trend as ΔEs-t and the lowest unoccupied molecular orbital energies. Also, the electrophilicity appears inverse correlation with our results of ΔΕs–t. The purpose of the present work was to assess the influence of 1 to 6 silicon substitutions on the stability, band gaps, nucleophilicity, electrophilicity, and proton affinity. Finally, our investigation introduces novel silylenes with possible applications in chemistry such as semiconductors, cumulated multidentate ligands, etc.

Graphical abstract

Synopsis

Substitution effects on stability (ΔΕs-t) of novel singlet (s) and triplet (t) forms of bicyclo[2.2.1]hepta-7-silylenes are compared and contrasted, at B3LYP/6–311++G** level of theory. All species appear as ground state minima on their energy surface, for showing no negative force constant. Singlets (1s–24s) are ground state and more stable than their corresponding triplets (1t–24t). The most stable scrutinized silylenes appear to be 2,3-disilabicyclo[2.2.1]hepta-7-silylene (9) for showing the highest value of ΔEs-t. This stability can be related to our imposed topology and β-silicon effect. The purpose of the present work was to assess the influence of 1 to 6 silicon substitutions on stability (ΔΕs–t), band gaps (ΔΕHOMO–LUMO), nucleophilicity (N), electrophilicity (ω), and proton affinity (ΔΕPA). Finally, this new generation has the intrinsic potential to form accumulated multidentate ligands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ashenagar S, Kassaee MZ (2018). Turk. J. Chem. 42(4):974–987

    Article  CAS  Google Scholar 

  2. Schoeller WW, Sundermann A, Reiher M (1999). Inorg. Chem. 38:29–37

    Article  CAS  Google Scholar 

  3. Becerra R, Walsh R (2010). Dalt. Trans. 39:9217–9228

    Article  CAS  Google Scholar 

  4. Mizuhata Y, Sasamori T, Tokitoh N (2009). Chem. Rev. 109:3479–3511

    Article  CAS  Google Scholar 

  5. Tokitoh N, Okazaki R (2000). Coord. Chem. Rev. 210:251–277

  6. Bourissou D, Guerret O, Gabbai FP, Bertrand G (2000). Chem. Rev. 100:39–92

    Article  CAS  Google Scholar 

  7. Barden CJ, Schaefer HF (2000). J. Chem. Phys. 112:6515–6516

    Article  CAS  Google Scholar 

  8. Lee EPF, Dyke JM, Wright TG (2000). Chem. Phys. Lett. 326:143–150

    Article  CAS  Google Scholar 

  9. Bruce M (1991). Chem. Rev. 91:197–257

    Article  CAS  Google Scholar 

  10. Ayoubi-Chianeh M, Kassaee MZ (2019). Res. Chem. Intermed. 45:4677–4691

    Article  CAS  Google Scholar 

  11. Haaf M, Schmedake TA, West R (2000). Acc. Chem. Res. 33:704–714

    Article  CAS  Google Scholar 

  12. Yao S, **ong Y, Driess M (2011). Organometallics 30:1748–1767

    Article  CAS  Google Scholar 

  13. Blom B, Stoelzel M, Driess M (2013). Chem. Eur. J. 19:40

    Article  CAS  Google Scholar 

  14. Goldberg DE, Harris DH, Lappert MF, Thomas KM (1976). J. Chem. Soc. Chem. Commun.:261

  15. Abedini N, Kassaee MZ, Cummings PT (2020) Borasilylenes in focus: topological effects of nitrogen atoms by DFT. Silicon:1–7

  16. Heaven MW, Metha GF, Buntine MA, Phys J (2001). Chem. A 105:1185–1196

    CAS  Google Scholar 

  17. Zachariah MR, Tsang W (1995). J. Phys. Chem. 99:5308–5318

    Article  CAS  Google Scholar 

  18. Lucas DJ, Curtiss LA, Pople JA (1993). J. Chem. Phys. 99:6697–6703

    Article  CAS  Google Scholar 

  19. Boudjouk P, Black E, Kumarathasan R (1991). Organometal. 10:2095–2096

    Article  CAS  Google Scholar 

  20. Kassaee MZ, Buazar F, Soleimani-Amiri S, Mol J (2008) Struct. THEOCHEM 866:52–57

    Article  CAS  Google Scholar 

  21. Cote DR, Van Nguyen S, Stamper AK, Armbrust DS, Tobben D, Conti RA, Lee GY (1999) IBM J. res. Dev. 43:5–38

    CAS  Google Scholar 

  22. Kassaee MZ, Najafi Z, Shakib FA, Momeni MR (2011). J. Organometal. Chem. 696:2059–2064

    Article  CAS  Google Scholar 

  23. Tamao K, Kobayashi M, Matsuo T, Furukawa S, Tsuji H (2012). Chem. Commun. 48:1030–1032

    Article  CAS  Google Scholar 

  24. Holthausen MC, Koch W, Apeloig Y (1999). J. Am. Chem. Soc. 121:2623–2624

    Article  CAS  Google Scholar 

  25. Kassaee MZ, Zandi H (2012). J. Phys. Org. Chem. 25:50–57

    Article  CAS  Google Scholar 

  26. Sekiguchi A, Tanaka T, Ichinohe M, Akiyama K, Tero-Kubota S, Am J (2003). Chem. Soc. 125:4962–4963

    Article  CAS  Google Scholar 

  27. West R, Fink MJ, Michl J (1981). Science 214:1343–1344

    Article  CAS  Google Scholar 

  28. B. T. Luke, J. A. Pople, M-B. Krogh-Jespersen, Y. Apeloig, M. Karni, J. Am. Chem. Soc. 1986, 108, 270–284

  29. Kalcher J, Sax AF, Mol J (1992) Struct. THEOCHEM 253:287–302

    Article  Google Scholar 

  30. Krogh-Jespersen K (1985). J. Am. Chem. Soc. 107:537–543

    Article  CAS  Google Scholar 

  31. Yoshida M, Tamaoki N (2002). Organometallics 21:2587–2589

    Article  CAS  Google Scholar 

  32. Soleimani Purlak N, Kassaee MZ (2020). J. Phys. Org. Chem.:33(6)

  33. Yan Z, Truhlar DG (2008). Theor. Chem. Account 120:215–241

    Article  Google Scholar 

  34. Becke AD (1988). Phys. Rev. 38:3098

    Article  CAS  Google Scholar 

  35. Becke AD (1993). J. Chem. Phys. 98:5648–5652

    Article  CAS  Google Scholar 

  36. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993). J. Comput. Chem. 14:1347–1363

    Article  CAS  Google Scholar 

  37. Kassaee MZ, Ashenagar S (2018). J. Mol. Model. 24:2–11

    Article  Google Scholar 

  38. Domingo LR, Chamorro E, Perez P (2008). J. Org. Chem. 73:4615–4624

    Article  CAS  Google Scholar 

  39. Parr RG, Szentpaly L, Liu S (1999). J. Am. Chem. Soc. 121:1922–1924

    Article  CAS  Google Scholar 

  40. Nyulaszi L, Belghazi A, Szetsi SK, Veszpremi T, Heinicke J (1994). THEOCHEM J. Mol. Struct. 313:73–81

    Article  Google Scholar 

  41. Nyulaszi L, Schleyer PVR (1999). J. Am. Chem. Soc 121:6872–6875

    Article  CAS  Google Scholar 

  42. Shimizu H, Gordon MS (1994). Organometallics 13:186–189

    Article  CAS  Google Scholar 

  43. Lambert JB, Zhao Y (1996). J. Am. Chem. Soc. 118:7867–7868

    Article  CAS  Google Scholar 

  44. J. Ola’h, T.Veszpre’mi, F. D. Proft, P. Geerlings, J. Phys. Chem. A 2007, 111, 10815–10823

  45. J. Ola’h, F. De Proft, T.Veszpre’mi, P. Geerlings, J. Phys. Chem. A 2005, 109, 1608–1615

  46. Scrocco E, Tomasi J (1973). New Concepts II 42:95–170

    Article  CAS  Google Scholar 

  47. Parr RG, Pearson RG (1983). J. Am. Chem. Soc. 105:7512–7516

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the support from the Tarbiat Modares University (TMU).

Availability of data and material

Not applicable.

Code availability

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamad Z. Kassaee.

Ethics declarations

Conflict of interest

There authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOC 1512 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abedini, N., Kassaee, M.Z. Substitution effects on novel bicyclo[2.2.1]hepta-7-silylenes by DFT. J Mol Model 27, 121 (2021). https://doi.org/10.1007/s00894-021-04726-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-021-04726-z

Keywords

Navigation