Log in

Bound state solutions of Schrödinger equation with modified Mobius square potential (MMSP) and its thermodynamic properties

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

A Correction to this article was published on 13 June 2023

This article has been updated

Abstract

We solved the Schrödinger equation with the modified Mobius square potential model using the modified factorization method. Within the framework of the Greene–Aldrich approximation for the centrifugal term and using a suitable transformation scheme, we obtained the energy eigenvalues equation and the corresponding eigenfunction in terms of the hypergeometric function. Using the resulting eigenvalues equation, we calculated the vibrational partition function and other relevant thermodynamic properties. We also showed that the modified Mobius square potential can be reduced to the Hua potential model using appropriate potential constant values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Change history

References

  1. Chun-Feng H, Zhong-**ang Z, Yan LI (1999) Bound states of the Klein–Gordon equation with vector and scalar Wood–Saxon potentials. Acta Phys Sin 8(8):561–564

  2. IkhdairSM SR (2007) A perturbative treatment for the bound states of the Hellmann potential. J Mol Struct THEOCHEM 809(1–3):103–113

    Article  Google Scholar 

  3. Sever R, Tezan C, Yesiltas O, Bucurgat M (2008) Exact solution of effective mass Schrödinger equation for the Hulthen potential. Int J Theor Phys 47(9):2243–2248

    Article  Google Scholar 

  4. De Castro AS, Armat A, Hassanabadi H (2014) Scattering and bound states of fermions in the modified Hulthen potential. EPJ Plus 129:216

  5. Chen G (2004) Bound states for Dirac equation with Wood–Saxon potential. Acta Phys Sin 53(3):608–683

  6. Villalba VM, Rojas C (2006) Bound states of the Klein–Gordon equation in the presence of short range potentials. Int J Mod Phys A 21(2):313–325

  7. Okon IB, Popoola OO, Ituen EE (2016) Bound state solution to Schrödinger equation with Hulthen plus exponential coulombic potential with centrifugal potential barrier using parametric Nikiforov–Uvarov method. IJRAP 5(2)

  8. Pekeris C (1934) The rotation-vibration coupling in diatomic molecules. Phys Rev 45(2):98

    Article  CAS  Google Scholar 

  9. Qiang WC, Dong SH (2007) Arbitrary l-state solutions of the rotating Morse potential through the exact quantization rule method. Phys Lett A 363(3):169–176

  10. Berkdemir C, Han J (2005) Any l-state solutions of the Morse potential through the Pekeris approximation and Nikiforov–Uvarov method. Chem Phys Lett 409(4):203–207

  11. Bayrak O, Boztosun I (2007) Bound state solutions of the Hulthen potential by using the asymptotic iteration method. Phys Scr 76(1):92

    Article  CAS  Google Scholar 

  12. Egrifes H, Demirhan D, Buyukkilic F (2000) Exact solutions of the Schrödinger equation for the deformed hyperbolic potential well and the deformed four-parameter exponential type potential. Phys Lett A 275(4):229–237

    Article  CAS  Google Scholar 

  13. Bayrak O, Boztosun I, Ciftci H (2007) Exact analytical solutions to the Kratzer potential by the asymptotic iteration method. Int J Quantum Chem 107(3):540–544

    Article  CAS  Google Scholar 

  14. Ikhdair SM, Sever R (2009) Improved analytical approximation to arbitrary l-state solutions of the Schrödinger equation for the hyperbolic potential. Ann Phys 18(4):189–197

    Article  Google Scholar 

  15. Onate C, Oyewumi K, Falaye B (2014) Approximate solutions of the Schrödinger equation with the hyperbolical potential: supersymmetric approach. Few-Body Syst 55(1):61–67

    Article  Google Scholar 

  16. Hamzavi M, Thylwe KE, Rajabi A (2013) Approximate bound states solution of the Hellmann potential. Commun Theor Phys 60(1):1

    Article  Google Scholar 

  17. Ikhdair SM, Falaye BJ (2013) Approximate analytical solutions to relativistic and nonrelativistic Poschl–Teller potential with its thermodynamic properties. Chem Phys 421:84–95

  18. Zhang LH, Li XP, Jia CS (2011) Approximate solutions of the Schrödinger equation with the generalized Morse potential model including the centrifugal term. Int J Quantum Chem 111(9):1870–1878

    Article  CAS  Google Scholar 

  19. Ikot AN, Akpabio LE, Umoren EB (2011) Exact solution of Schrödinger equation with inverted Wood–Saxon and Manning–Rosen potentials. J Sci Res 3(1):25–33

  20. Zhang WC, Sun GH, Dong SH (2010) Exactly complete solutions of the Schrödinger equation with a spherically harmonic oscillatory ring-shaped potential. Phys Lett A 374:704–708

    Article  CAS  Google Scholar 

  21. Antia AD, Ikot AN, Hassanabadi H, Maghsoodi E (2013) Bound state solutions of Klein–Gordon equation with Mobius square plus Yukawa potentials. Indian J Phys 87(11):1133–1139

  22. Ikot AN, Awoga OA, Hassanabadi H, Maghsoodi E (2014) Analytical approximate solution of Schrödinger equation in D dimensions with quadratic exponential-type potential for arbitrary l-state. Commun Theor Phys 61:457–463

    Article  Google Scholar 

  23. Falaye BJ, Oyewumi KJ, Abbas M (2013) Exact solution of Schrödinger equation with q-deformed quantum potentials using Nikiforov–Uvarov method. Chin Phys B 22(11):110301

  24. Onate CA, Ojonubah JO (2016) Eigensolutions of the Schrödinger equation with a class of Yukuwa potentials via supersymmetric approach. JTAP 10:21–26

  25. Ikot AN, Obong HP, Abbey TM, Zare S, Ghafourian M, Hassanabadi H (2016) Bound and scattering state of position dependent mass Klein–Gordon equation with Hulthen plus deformed-type hyperbolic potential. Few-Body Syst 57:807–822

  26. Onate CA, Onyeaju MC, Ikot AN, Ojonubah JO (2016) Analytical solutions of the Klein–Gordon equation with a combined potential. Chin J Phys 000:1–6

  27. Onate CA, Ikot AN, Onyeaju MC, Udoh ME (2017) Bound state solutions of the D-dimensional Klein–Gordon equation with hyperbolic potential. Karbala Int J Mod Sci 3:1–7

  28. Ciftci H, Hall RL, Saad N (2003) Asymptotic iteration method for eigenvalue problems. J Phys A 36(47). https://doi.org/10.1088/0305-4470/36/47/008

  29. Qiang WC, Gao Y, Zhou RS (2008) Arbitrary l-state approximate solutions of the Hulthen potential through the exact quantization rule. Cent Eur J Phys 6(2):356–362

  30. Ikhdair SM, Sever R (2009) Exact quantization rule to the Kratzer-type potentials: an application to the diatomic molecules. J Math Chem 45:1137

    Article  CAS  Google Scholar 

  31. Dong SH (2007) Factorization method in quantum mechanics. Springer, Amsterdam

    Book  Google Scholar 

  32. Jia CS, Jia Y (2017) Relativistic rotation-vibrational energies for the Cs2 molecule. Eur Phys J D 71:3

  33. Falaye BJ, Oyewumi KJ, Ikhdair SM, Hamzavi M (2014) Eigensolution techniques, their application and Fisher’s information entropy of the Tietz–Wei diatomic model. Phys Scr 89:115204

  34. Liu JY, Hu XT, Jia CS (2014) Molecular energies of the improved Rosen–Morse potential energy model. Can J Chem 92:40–44

  35. Tang HM, Liang GC, Zhang LH, Zhao F, Jia CS (2014) Diatomic molecule energies of the modified Rosen–Morse potential energy model. Can J Chem 92:341–345

  36. Liu JY, Zhang GU, Jia CS (2013) Calculation of the interaction potential energy curve and vibrational levels for the a 3 Σ u + state of 7Li2 molecule. Phys Lett A 377:1444–1447

  37. Boonserm P, Visser M (2011) Quasi-normal frequencies: key analytic results. JHEP 1103:073

    Article  Google Scholar 

  38. Yazarloo BH, Hassanabadi H, Zarrinkamar S (2012) Oscillator strengths based on the Mobius square potential under Schrödinger equation. EPJ Plus 127:51

  39. Ikot AN, Yazarloo BH, Zarrinkamar S, Hassanabadi H (2014) Symmetry limits of (D+1)-dimensional Dirac equation with Mobius square potential. EPJ Plus 129:79

  40. Ikhdair SM (2011) An approximate k state solutions of the Dirac equation for the generalized Morse potential under spin and pseudospin symmetry. J Math Phys 52:052303

    Article  Google Scholar 

  41. Maghsoodi E, Hassanabadi H, Zarrinkamar S (2012) Spectrum of Dirac equation under Deng–Fan scalar and vector potentials and a Coulomb tensor interaction by SUSYQM. Few-Body Syst 53:525

  42. Dong SH, Lazada-Cassou M, Yu J, Jimenez-Angeles F, Rivera AL (2007) Hidden symmetries and thermodynamic properties for a harmonic oscillator plus an inverse square potential (Int J Quantum Chem 107:366N

  43. Oyewumi KJ, Falaye BJ, Onate CA, Oluwadare OJ, Yahya WA (2014) Thermodynamic properties and the approximate solutions of the Schrödinger equation with the shifted Deng–Fan potential model. Mol Phys 112(1):127–141

  44. Ikot AN, Lutfuoglu BC, Ngweke MI, Udoh ME, Zare S, Hassanabadi H (2016) Klein–Gordon equation particles in exponential-type molecule potentials and their thermodynamic properties in D dimensions. EPJ Plus 131:419

  45. Song XQ, Zhang CW, Jia CS (2017) Thermodynamic properties for the sodium dimer. Chem Phys Lett 673:50

    Article  CAS  Google Scholar 

  46. Jia CS, Zhang LH, Wang CW (2017) Thermodynamic properties for the lithium dimer. Chem Phys Lett 667:211

  47. Jia CS, Wang CW, Zhang LH, Peng XL, Zeng R, You XT (2017) Partition function of improved Tietz oscillators. Chem Phys Lett 676:150

  48. Ikot AN, Chukwuocha EO, Onyeaju MC, Onate CN, Ita BI, Udoh ME (2018) Thermodynamic properties of diatomic molecules with general molecular potential. Pramana J Phys 90:22

    Article  Google Scholar 

  49. Yahya WA, Oyewumi KJ (2015) Thermodynamic properties and approximate solutions of the l-state Poschl–Teller-type potential. J Assoc Arab Univ Basic Appl Sci 21:53–58

  50. Hassanabadi H, Yazarloo BH, Ikot AN, Salehi N, Zarrinkamar Z (2013) Exact analytical versus numerical solutions of Schrödinger equation for Hua plus modified Eckart potential. Indian J Phys 87(12):1219–1223

Download references

Acknowledgements

The authors thank the reviewers for their positive and valuable comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uduakobong S. Okorie.

Additional information

The original online version of this article was revised due to errors in equations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okorie, U.S., Ikot, A.N., Onyeaju, M.C. et al. Bound state solutions of Schrödinger equation with modified Mobius square potential (MMSP) and its thermodynamic properties. J Mol Model 24, 289 (2018). https://doi.org/10.1007/s00894-018-3811-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-018-3811-8

Keywords

PAC NOS

Navigation