Log in

Theoretical study on the influence of the Mg2+ and Al3+ octahedral cations on the vibrational spectra of the hydroxy groups of dioctahedral 2:1 phyllosilicate models

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The effect on the vibrational spectrum of the hydroxy groups in dioctahedral 2:1 phyllosilicates of the isomorphous cation substitution of Mg2+ by Al3+ in the octahedral sheet was investigated at the DFT level. Ortho, meta and para Mg2+ configurational polymorphs were defined. The theoretical vibration frequencies of OH groups depend significantly on the nature of the cations they are joined with. Theoretical values are spread out over narrow ranges: 3,612–3,626 cm−1 for ν(AlOHMg), 3,604–3,606 cm−1 for ν(AlOHAl), and 3,657–3,660 cm−1 for ν(MgOHMg); 803–830 cm−1 for δ(AlOHMg), 877 cm−1 for δ(AlOHAl), and 693–711 cm−1 for δ(MgOHMg), in agreement with known experimental values. From the intensities of the XOHY bands, we observe that the vibrational adsorptivities of the ν(OH) vibrations are not the same for all XOHY groups, and that ν(MgOHMg) absorptivity is much lower than that of ν(AlOHAl). These theoretical results should be taken into account in quantitative analysis of experimental vibrational studies in clay minerals, introducing different molar extinction coefficients in the Lambert-Beer law to determine the relative concentrations of both cationic arrangements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2a–c
Fig. 3

Similar content being viewed by others

References

  1. Brindley GW, Brown G (eds) (1984) Crystal structures of clay minerals and their X-ray identification, Mineralogical Society Monograph no. 5, London

  2. Moore DM, Reynolds RC Jr (1989) X-ray diffraction and the identification and analysis of clay minerals. Oxford University Press, UK

    Google Scholar 

  3. Catti M, Ferraris G, Hull S, Pavese A (1994) Eur J Mineral 6:171–178

    Article  CAS  Google Scholar 

  4. Farmer VC (1974) The layer silicates. In: Farmer VC (ed) The infrared spectra of minerals. Mineralogical Society, London, pp 331–363

    Google Scholar 

  5. Russell J, Fraser A (1994) Infrared methods. In: Wilson MJ (ed) Clay mineralogy: spectroscopic and chemical determinative methods. Chapman and Hall, New York, pp 11–67

    Google Scholar 

  6. Besson G, Drits VA (1997) Clay Clay Miner 45:158–169

    Article  CAS  Google Scholar 

  7. Drits VA, Sakharov BA, Dainyak LG, Salyn AL, Lindgreen H (2002) Am Mineral 87:1590–1607

    CAS  Google Scholar 

  8. Cuadros J, Sainz-Díaz CI, Ramírez R, Hernández-Laguna A (1999) Am J Sci 299:289–308

    Article  CAS  Google Scholar 

  9. Cuadros J, Altaner J (1998) Eur J Mineral 10:111–124

    Article  CAS  Google Scholar 

  10. Botella V, Timón V, Escamilla-Roa E, Hernández-Laguna A, Sainz-Díaz CI (2004) Phys Chem Miner 31:475–486

    Article  CAS  Google Scholar 

  11. Besson G, Drits VA (1997) Clay Clay Miner 45:170–183

    Article  CAS  Google Scholar 

  12. Madejová J, Komadel P, Çiçel G (1994) Clay Miner 29:319–326

    Article  Google Scholar 

  13. Vedder W (1964) Am Mineral 49:736–768

    CAS  Google Scholar 

  14. Robert JL, Kodama H (1988) Am J Sci 228A:196–212

    Google Scholar 

  15. Fialips CI, Hou D, Yan L, Wu J, Stucki JW (2002) Clay Clay Miner 50:455–469

    Article  CAS  Google Scholar 

  16. Dainyak LG, Drits VA, Zviagina BB, Lindgreen H (2006) Am Mineral 91:589–603

    Article  CAS  Google Scholar 

  17. Slonimskaya MV, Besson G, Dainyak LG, Tchoubar C, Drits VA (1986) Clay Miner 21:377–388

    Article  CAS  Google Scholar 

  18. Marchel C, Stanjek H (2012) Clay Miner 47:105–115

    Article  CAS  Google Scholar 

  19. Scheinost AC, Schulze DG, Schwertmann U (1999) Clay Clay Miner 47:156–164

    Article  CAS  Google Scholar 

  20. Pelletier M, Michot LJ, Humbert B, Barrés O, D’Espinose de la Caillerie JB, Robert JL (2003) Am Mineral 88:1801–1808

    CAS  Google Scholar 

  21. Sainz-Díaz CI, Cuadros J, Hernández-Laguna A (2001) Phys Chem Miner 28:445–454

    Article  Google Scholar 

  22. Kubicki JD, Apitz SE (1998) Am Mineral 83:1054–1066

    CAS  Google Scholar 

  23. Sainz-Díaz CI, Timón V, Botella V, Hernández Laguna A (2000) Am Mineral 85:1038–1045

    Google Scholar 

  24. Timón V, Sainz-Díaz CI, Botella V, Hernández-Laguna A (2003) Am Mineral 88:1788–1795

    Google Scholar 

  25. Martínez-Alonso S, Rustad JR, Goetz AFH (2002) Am Mineral 87:1215–1223

    Google Scholar 

  26. Hobbs JD, Cygan RT, Nagy KI, Schults PA, Sears MP (1997) Am Mineral 82:657–662

    CAS  Google Scholar 

  27. Boek ES, Sprik M (2003) J Phys Chem B 107:3251–3256

    Article  CAS  Google Scholar 

  28. Sainz-Díaz CI, Timón V, Botella V, Artacho E, Hernández Laguna A (2002) Am Mineral 87:958–965

    Google Scholar 

  29. Hohenberg P, Kohn W (1964) Phys Rev B 136:864–871

    Article  Google Scholar 

  30. Kohn W, Sham LJ (1965) Phys Rev 140:A1133–A1138

    Article  Google Scholar 

  31. Soler JM, Artacho E, Gale JD, García A, Junquera J, Ordejón P, Sánchez-Portal D (2002) J Phys Condens Matter 14:2745–2779

    Article  CAS  Google Scholar 

  32. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  33. Troullier N, Martins JL (1991) Phys Rev B 43:1993–2006

    Article  CAS  Google Scholar 

  34. Kleinman L, Bylander DM (1982) Phys Rev Lett 48:1425–1428

    Article  CAS  Google Scholar 

  35. Bachelet GB, Schlüter M (1982) Phys Rev B 25:2103–2108

    Article  CAS  Google Scholar 

  36. Louie SG, Froyen S, Cohen ML (1982) Phys Rev B 26:1738–1742

    Article  CAS  Google Scholar 

  37. Hebenstreit J, Scheffler M (1992) Phys Rev B 46:10134–10145

    Article  CAS  Google Scholar 

  38. Artacho E, Sánchez-Portal D, Ordejón P, García A, Soler JM (1999) Phys Status Solidi 215:809–817

    Article  CAS  Google Scholar 

  39. Ortega-Castro J, Hernández-Haro N, Hernández-Laguna A, Sainz-Díaz CI (2008) Clay Miner 43:351–361

    Article  CAS  Google Scholar 

  40. Ortega-Castro J, Hernández-Haro N, Muñoz-Santiburcio D, Hernández-Laguna A, Sainz-Díaz CI (2009) J Mol Struct THEOCHEM 912:82–87

    Article  CAS  Google Scholar 

  41. Sainz-Díaz CI, Escamilla-Roa E, Hernández-Laguna A (2005) Am Mineral 90:1827–1834

    Article  Google Scholar 

  42. Ghosez P, Michenaud JP, Gonze X (1998) Phys Rev B 58:6224–6240

    Article  CAS  Google Scholar 

  43. Ordejón P, Artacho E, Soler JM (1996) Phys Rev B 53, R10441

    Article  Google Scholar 

  44. King-Smith RD, Vanderbilt D (1993) Phys Rev B 47:1651–1654

    Article  CAS  Google Scholar 

  45. Fernández-Torre D, Escribano R, Archer T, Pruneda JM, Artacho E (2004) J Phys Chem A 108:10535–10541

    Article  Google Scholar 

  46. Sainz-Díaz CI, Hernández-Laguna A, Dove MT (2001) Phys Chem Miner 28:322–331

    Article  Google Scholar 

  47. Candars S, Guégan R, Garaga MN, Bourrat X, Le Forestier L, Fayon F, Huynh TV, Allier T, Nour Z, Mossiot D (2012) Chem Mater 24:4376. doi:10.1021/cm302549k

    Article  Google Scholar 

  48. Tsipursky SI, Drits VA (1984) Clay Miner 19:177–193

    Article  CAS  Google Scholar 

  49. Ortega-Castro J, Hernández-Haro N, Dove MT, Hernández-Laguna A, Sainz-Díaz CI (2010) Am Mineral 95:209–220

    Article  CAS  Google Scholar 

  50. Sainz-Díaz CI, Palin EJ, Hernández-Laguna A, Dove MT (2003) Phys Chem Miner 30:382–392

    Article  Google Scholar 

  51. Palin EJ, Dove MT, Hernández-Laguna A, Sainz-Díaz CI (2004) Am Mineral 89:164–175

    CAS  Google Scholar 

  52. Hernández-Laguna A, Escamilla-Roa E, Timón V, Dove MT, Sainz-Díaz CI (2006) Phys Chem Miner 33:655–666

    Article  Google Scholar 

  53. Koch W, Holthausen MC (2001) A chemist’s guide to density functional theory. Wiley-VCH, New York

    Book  Google Scholar 

  54. Staroverov VN, Scuseria GE (2003) J Chem Phys 119:12129–12137

    Article  CAS  Google Scholar 

  55. Goerik L, Grimme S (2011) Phys Chem Chem Phys 13:6670–6688

    Article  Google Scholar 

  56. Adamo C, Ernzerhof M, Scuseria GE (2000) J Chem Phys 112:2643–2649

    Article  CAS  Google Scholar 

  57. Kloprogge JT, Komarneni S, Yanagisawa K, Fry R, Frost RL (1999) J Colloid Interface Sci 212:562–569

    Article  CAS  Google Scholar 

  58. Farmer VC, Russell JD (1964) Spectrochim Acta 20:1149–1173

    Article  CAS  Google Scholar 

  59. Petit S, Prost T, Decarreau A, Mosser C, Toledo-Groke MC (1992) Clay Clay Miner 40:436–445

    Article  CAS  Google Scholar 

  60. Bishop JL, Pieters CM, Edwards JO (1994) Clay Clay Miner 42:702–716

    Article  CAS  Google Scholar 

  61. Van der Marel HW, Beutelspacher H (1976) Am Mineral 49:736–768

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to D. Fernández for fruitful discussions, to the exchange program of the Royal Society (UK), and BTE2002-03838, CGL2008-02850/BTE and CTQ2004-04648 MCYT projects, to European Union–Le Fonds Européen de Développement Régional (EU FEDER) funds for financial support and to Centro Técnico de Informática of Consejo Superior de Investigaciones Científicas (CSIC) and the Computational Center of the University of Granada for computing facilities. N.H.-H. is thankful to CSIC for a PhD scholarship providing financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Hernández-Haro.

Additional information

This paper belongs to Topical Collection QUITEL 2013

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernández-Haro, N., Ortega-Castro, J., Pruneda, M. et al. Theoretical study on the influence of the Mg2+ and Al3+ octahedral cations on the vibrational spectra of the hydroxy groups of dioctahedral 2:1 phyllosilicate models. J Mol Model 20, 2402 (2014). https://doi.org/10.1007/s00894-014-2402-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2402-6

Keywords

Navigation