Log in

A multiobjective evolutionary algorithm based on surrogate individual selection mechanism

  • Original Article
  • Published:
Personal and Ubiquitous Computing Aims and scope Submit manuscript

Abstract

Recently, classification-based preselection (CPS) strategy for evolutionary multiobjective optimization has been found to be very effective and efficient for solving complicated multiobjective optimization problems (MOPs). However, this strategy can only classify the candidate solutions into different categories, but it is difficult to find out which one is the best. In order to overcome this shortcoming, we propose a surrogate individual selection mechanism for multiobjective evolutionary algorithm based on decomposition. In this mechanism, we get the best one from candidate solution set by surrogate model, which mitigates the risk of using CPS strategy. Furthermore, we generate candidate solution set through a new offspring generation strategy, which can improve the quality of the candidate solutions. Based on typical multiobjective evolutionary algorithm MOEA/D, we design a new algorithm framework, called MOEA/D-SISM, through integrating the proposed surrogate individual selection mechanism. We compare MOEA/D-SISM with other state-of-the-art multiobjective evolutionary algorithms (MOEAs), and experimental results show that our proposed algorithm obtains the best performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Brys T, Harutyunyan A, Vrancx P, Now A, Taylor ME (2017) Multiobjectivization and ensembles of sha**s in reinforcement learning [J]. Neurocomputing 263:48–59

    Article  Google Scholar 

  2. Lin Q, Liu Z, Yan Q, Du Z, Coello CAC, Liang Z, Wang W, Chen J (2016) Adaptive composite operator selection and parameter control for multiobjective evolutionary algorithm [J]. Inf Sci 339:332–352

    Article  Google Scholar 

  3. Shi C, Kong X, Fu D, Yu PS, Wu B (2014) Multi-label classification based on multi-objective optimization [J]. ACM Trans Intell Syst Technol 5(2):1–22

    Article  Google Scholar 

  4. Liu J, Gong M, Miao Q, Wang X, Li H, Liu J, Gong M, Miao Q (2018) Structure learning for deep neural networks based on multiobjective optimization [J]. IEEE Trans Neural Netwo Learn Syst 29(6):2450–2463

    Article  MathSciNet  Google Scholar 

  5. Zhou A, Qu BY, Li H, Zhao SZ, Suganthan PN, Zhang Q (2011) Multiobjective evolutionary algorithms: a survey of the state of the art [J]. Swarm Evol Comput 1(1):32–49

    Article  Google Scholar 

  6. Srinivas N, Deb K (1994) Muiltiobjective optimization using nondominated sorting in genetic algorithms [M]. MIT Press, Cambridge

    Book  Google Scholar 

  7. Deb K, Agrawal S, Pratap A, Meyarivan T (2000) A fast elitist nondominated sorting genetic algorithm for multi-objective optimization: Nsga-II [C]. In: International conference on parallel problem solving from nature, pp 849–858

    Google Scholar 

  8. Zitzler E, Thiele L (1998) Multiobjective optimization using evolutionary algorithms a comparative case study [M]. Springer, Berlin Heidelberg

    Book  Google Scholar 

  9. Laumanns M (2001) Spea2 : improving the strength pareto evolutionary algorithm [C]. In: Technical report Gloriastrasse

    Google Scholar 

  10. Zitzler E, Knzli S (2004) Indicator-based selection in multiobjective search [C]. Lect Notes Comput Sci 3242:832–842

    Article  Google Scholar 

  11. Basseur M, Zitzler E (2008) A preliminary study on handling uncertainty in indicator-based multiobjective optimization [J]. Lect Notes Comput Sci 2(3):727–739

    Google Scholar 

  12. Bader J, Zitzler E (2014) Hype: an algorithm for fast hypervolume-based many-objective optimization [C]. Evol Comput 19(1):45–76

    Article  Google Scholar 

  13. Zhang Q, Li H (2007) MOEA/D: a multiobjective evolutionary algorithm based on decomposition [J]. IEEE Trans Evol Comput 11(6):712–731

    Article  Google Scholar 

  14. Li H, Zhang Q (2009) Multiobjective optimization problems with complicated pareto sets, moea/d and nsga-ii [J]. IEEE Trans Evol Comput 13(2):284–302

    Article  Google Scholar 

  15. Zhang Q, Liu W, Li H (2009) The performance of a new version of moea/d on cec09 unconstrained mop test instances [C]. In: IEEE Congress on Evolutionary Computation. IEEE Press, Piscataway, pp 203–208

  16. Mashwani WK, Salhi A (2012) A decomposition-based hybrid multiobjective evolutionary algorithm with dynamic resource allocation [J]. Appl Soft Comput 12(9):2765–2780

    Article  Google Scholar 

  17. Zhou A, Zhang Q, Zhang G (2012) A multiobjective evolutionary algorithm based on decomposition and probability model [C]. IEEE Trans Evol Comput:1–8. https://doi.org/10.1109/CEC.2012.6252954

  18. Zhang H, Zhou A, Zhang G, Singh HK (2017) Accelerating moea/d by nelder-mead method [C]. IEEE Trans Evol Comput:976–983. https://doi.org/10.1109/CEC.2017.7969414

  19. Zhang J, Zhou A, Zhang G (2015) A multiobjective evolutionary algorithm based on decomposition and preselection [J]. In: Bio-inspired computing - theories and applications, pp 631–642

    Chapter  Google Scholar 

  20. Lin X, Zhang Q, Kwong S (2016) A decomposition based multiobjective evolutionary algorithm with classification [C]. Evol Comput:3292–3299

  21. Zhao SZ, Suganthan PN, Zhang Q (2012) Decomposition-based multiobjective evolutionary algorithm with an ensemble of neighborhood sizes [J]. IEEE Trans Evol Comput 16(3):442–446

    Article  Google Scholar 

  22. Li K, Fialho A, Kwong S, Zhang Q (2014) Adaptive operator selection with bandits for a multiobjective evolutionary algorithm based on decomposition [J]. IEEE Trans Evol Comput 18(1):114–130

    Article  Google Scholar 

  23. Venske SM, Gon RAA, Delgado MR (2014) Ademo/d: multiobjective optimization by an adaptive differential evolution algorithm [J]. Neurocomputing 127(127):65–77

    Article  Google Scholar 

  24. Lin Q, Tang C, Ma Y, Du Z, Li J, Chen J, Ming Z (2017) A novel adaptive control strategy for decomposition-based multiobjective algorithm [J]. Comput Oper Res 78:94–107

    Article  MathSciNet  MATH  Google Scholar 

  25. Li K, Zhang Q, Kwong S, Li M, Wang R (2014) Stable matching-based selection in evolutionary multiobjective optimization [J]. IEEE Trans Evol Comput 18(6):909–923

    Article  Google Scholar 

  26. Li K, Kwong S, Zhang Q, Deb K (2015) Interrelationship-based selection for decomposition multiobjective optimization [J]. IEEE Trans Cybern 45(10):2076–2088

    Article  Google Scholar 

  27. Chen X, Shi C, Zhou A, Wu B, Cai Z (2017) A decomposition based multiobjective evolutionary algorithm with semi-supervised classification[C]. IEEE Congress Evol Comput:797–804. https://doi.org/10.1109/CEC.2017.7969391

  28. Tan Y, Zhu Y (2010) Fireworks algorithm for optimization [C]. In: International conference on advances in swarm intelligence, pp 355–364

    Chapter  Google Scholar 

  29. Naujoks B, Beume N, Emmerich M (2005) Multi-objective optimisation using s-metric selection: application to three-dimensional solution spaces [C]. Evol Comput 2:1282–1289

    MATH  Google Scholar 

  30. Das S, Suganthan PN (2011) Differential evolution: a survey of the state-of-the-art [J]. IEEE Trans Evol Comput 15(1):4–31

    Article  Google Scholar 

  31. Deb K, Goyal M (1996) A combined genetic adaptive search (geneas) for engineering design [J]. Computer Science and Informatics 26(4):30–45

    Google Scholar 

  32. Hillermeier C (1999) Nonlinear multiobjective optimization [J]. J Oper Res Soc 51:246

    Google Scholar 

  33. Cai Z, Wang Y (2006) A multiobjective optimization-based evolutionary algorithm for constrained optimization [J]. IEEE Trans Evol Comput 10(6):658–675

    Article  Google Scholar 

  34. Vapnik VN (1998) Statistical learning theory [M]. Encyclopedia of the sciences of. Learning 41(4):3185–3185

    Google Scholar 

  35. Wang Z, Zhang Q, Zhou A, Gong M, Jiao L (2017) Adaptive replacement strategies for moea/d [J]. IEEE Trans Cybern 46(2):474–486

    Article  Google Scholar 

  36. ** Y (2005) A comprehensive survey of fitness approximation in evolutionary computation [J]. Soft Comput 9(1):3–12

    Article  Google Scholar 

  37. You H, Yang M, Wang D, Jia X (2009) Kriging model combined with latin hypercube sampling for surrogate modeling of analog integrated circuit performance [C]. The 10th International Symposium on Quality Electronic Desig:554–558. https://doi.org/10.1109/ISQED.2009.4810354

  38. Yu C, Kelley L, Zheng S, Tan Y (2014) Fireworks algorithm with differential mutation for solving the cec 2014 competition problems [C]. In IEEE Congress on Evolutionary Computation. IEEE Press, Piscataway, pp 3238–3245

  39. Tan Y (2015) S-metric-based multi-objective fireworks algorithm. IEEE Trans Evol Comput [C]:1257–1264. https://doi.org/10.1109/CEC.2015.7257033

  40. Wang Y, Cai Z, Zhang Q (2011) Differential evolution with composite trial vector generation strategies and control parameters [J]. IEEE Trans Evol Comput 15(1):55–66

    Article  Google Scholar 

  41. Zhang Q, Zhou A, Zhao S, Suganthan PN, Liu W, Tiwari S (2008) Multiobjective optimization test instances for the cec 2009 special session and competition [M]. University of Essex, Colchester

    Google Scholar 

  42. Li Y, Zhou A, Zhang G (2014) An moea/d with multiple differential evolution mutation operators [C]. IEEE Trans Evol Comput :397–404. https://doi.org/10.1109/CEC.2014.6900339

  43. Fonseca CM, Knowles JD, Thiele L, Zitzler E (2005) A tutorial on the performance assessment of stochastic multiobjective optimizers [C]. The third international conference on evolutionary multi-criterion. Optimization 216:240

    Google Scholar 

Download references

Funding

This research is supported in part by National Key Research and Development Program “New Energy Vehicle” Key Special Project Subsidy, Project Name: “Research and Development of Electronic and Electrical Architecture of Intelligent Electric Vehicle”, Project No. 2017YFB0102500. **ngtai City Science and Technology Bureau, Project Name: Research on obstacle avoidance method of autonomous intelligent electric vehicle in complex environment, Project No.2018ZC022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Wu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Wu, B. & Sheng, P. A multiobjective evolutionary algorithm based on surrogate individual selection mechanism. Pers Ubiquit Comput 23, 421–434 (2019). https://doi.org/10.1007/s00779-019-01211-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00779-019-01211-6

Keywords

Navigation