Log in

Tooth extraction in mice administered zoledronate increases inflammatory cytokine levels and promotes osteonecrosis of the jaw

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Introduction

Osteonecrosis of the jaw (ONJ) occurring after invasive dental treatment often adversely affects patients’ activities of daily living. Long-term administration of strong anti-bone resorptive agents such as bisphosphonates prior to invasive dental treatment is considered an ONJ risk factor; however, pathological mechanisms underlying ONJ development remain unclear.

Materials and Methods

We developed an ONJ mouse model in which a tooth is extracted during treatment with the bisphosphonate zoledronate.

Results

We observed induction of apoptosis in osteocytes, resulting in formation of empty lacunae in jaw bones at sites of tooth extraction but not in other bones of the same mice. We also observed elevated levels of inflammatory cytokines such as TNFα, IL-6 and IL-1 in jaw bone at the extraction site relative to other sites in zoledronate-treated mice. We also report that treatment in vitro with either zoledronate or an extract from Porphyromonas gingivalis, an oral bacteria, promotes expression of inflammatory cytokines in osteoclast progenitor cells. We demonstrate that gene-targeting of either TNFα, IL-6 or IL-1 or treatment with etanercept, a TNFα inhibitor, or a neutralizing antibody against IL-6 can antagonize ONJ development caused by combined tooth extraction and zoledronate treatment.

Conclusions

Taken together, the cytokine storm induced by invasive dental treatment under bisphosphonate treatment promotes ONJ development due to elevated levels of inflammatory cytokine-producing cells. Our work identifies novel targets potentially useful to prevent ONJ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Marx RE (2003) Pamidronate (Aredia) and zoledronate (Zometa) induced avascular necrosis of the jaws: a growing epidemic. J Oral Maxillofac Surg 61:1115–1117

    PubMed  Google Scholar 

  2. Ruggiero SL, Dodson TB, Fantasia J, Goodday R, Aghaloo T, Mehrotra B, O’Ryan F (2014) American Association of Oral and Maxillofacial Surgeons position paper on medication-related osteonecrosis of the jaw–2014 update. J Oral Maxillofac Surg 72:1938–1956

    PubMed  Google Scholar 

  3. Miksad RA, Lai KC, Dodson TB, Woo SB, Treister NS, Akinyemi O, Bihrle M, Maytal G, August M, Gazelle GS, Swan JS (2011) Quality of life implications of bisphosphonate-associated osteonecrosis of the jaw. Oncologist 16:121–132

    PubMed  PubMed Central  Google Scholar 

  4. Khamaisi M, Regev E, Yarom N, Avni B, Leitersdorf E, Raz I, Elad S (2007) Possible association between diabetes and bisphosphonate-related jaw osteonecrosis. J Clin Endocrinol Metab 92:1172–1175

    CAS  PubMed  Google Scholar 

  5. Molcho S, Peer A, Berg T, Futerman B, Khamaisi M (2013) Diabetes microvascular disease and the risk for bisphosphonate-related osteonecrosis of the jaw: a single center study. J Clin Endocrinol Metab 98:E1807–1812

    CAS  PubMed  Google Scholar 

  6. Berti-Couto SA, Vasconcelos AC, Iglesias JE, Figueiredo MA, Salum FG, Cherubini K (2014) Diabetes mellitus and corticotherapy as risk factors for alendronate-related osteonecrosis of the jaws: a study in Wistar rats. Head Neck 36:84–93

    PubMed  Google Scholar 

  7. Kastritis E, Melea P, Bagratuni T, Melakopoulos I, Gavriatopoulou M, Roussou M, Migkou M, Eleutherakis-Papaiakovou E, Terpos E, Dimopoulos MA (2017) Genetic factors related with early onset of osteonecrosis of the jaw in patients with multiple myeloma under zoledronic acid therapy. Leuk Lymphoma 58:2304–2309

    PubMed  Google Scholar 

  8. Rachner TD, Platzbecker U, Felsenberg D, Hofbauer LC (2013) Osteonecrosis of the jaw after osteoporosis therapy with denosumab following long-term bisphosphonate therapy. Mayo Clin Proc 88:418–419

    PubMed  Google Scholar 

  9. Hoff AO, Toth BB, Altundag K, Johnson MM, Warneke CL, Hu M, Nooka A, Sayegh G, Guarneri V, Desrouleaux K, Cui J, Adamus A, Gagel RF, Hortobagyi GN (2008) Frequency and risk factors associated with osteonecrosis of the jaw in cancer patients treated with intravenous bisphosphonates. J Bone Miner Res 23:826–836

    CAS  PubMed  Google Scholar 

  10. Otto S, Troltzsch M, Jambrovic V, Panya S, Probst F, Ristow O, Ehrenfeld M, Pautke C (2015) Tooth extraction in patients receiving oral or intravenous bisphosphonate administration: a trigger for BRONJ development? J Craniomaxillofac Surg 43:847–854

    PubMed  Google Scholar 

  11. Ripamonti CI, Maniezzo M, Campa T, Fagnoni E, Brunelli C, Saibene G, Bareggi C, Ascani L, Cislaghi E (2009) Decreased occurrence of osteonecrosis of the jaw after implementation of dental preventive measures in solid tumour patients with bone metastases treated with bisphosphonates. The experience of the National Cancer Institute of Milan. Ann Oncol 20:137–145

    CAS  PubMed  Google Scholar 

  12. Sakaguchi O, Kokuryo S, Tsurushima H, Tanaka J, Habu M, Uehara M, Nishihara T, Tominaga K (2015) Lipopolysaccharide aggravates bisphosphonate-induced osteonecrosis in rats. Int J Oral Maxillofac Surg 44:528–534

    CAS  PubMed  Google Scholar 

  13. Manzano-Moreno FJ, Ramos-Torrecillas J, De Luna-Bertos E, Ruiz C, Garcia-Martinez O (2015) High doses of bisphosphonates reduce osteoblast-like cell proliferation by arresting the cell cycle and inducing apoptosis. J Craniomaxillofac Surg 43:396–401

    PubMed  Google Scholar 

  14. Marx RE (2014) A decade of bisphosphonate bone complications: what it has taught us about bone physiology. Int J Oral Maxillofac Implants 29:e247–258

    PubMed  Google Scholar 

  15. Fliefel R, Troltzsch M, Kuhnisch J, Ehrenfeld M, Otto S (2015) Treatment strategies and outcomes of bisphosphonate-related osteonecrosis of the jaw (BRONJ) with characterization of patients: a systematic review. Int J Oral Maxillofac Surg 44:568–585

    CAS  PubMed  Google Scholar 

  16. Kang B, Cheong S, Chaichanasakul T, Bezouglaia O, Atti E, Dry SM, Pirih FQ, Aghaloo TL, Tetradis S (2013) Periapical disease and bisphosphonates induce osteonecrosis of the jaws in mice. J Bone Miner Res 28:1631–1640

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Park S, Kanayama K, Kaur K, Tseng HC, Banankhah S, Quje DT, Sayre JW, Jewett A, Nishimura I (2015) Osteonecrosis of the jaw developed in mice: disease variants regulated by gammadelta t cells in oral mucosal barrier immunity. J Biol Chem 290:17349–17366

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Soundia A, Hadaya D, Esfandi N, de Molon RS, Bezouglaia O, Dry SM, Pirih FQ, Aghaloo T, Tetradis S (2016) Osteonecrosis of the jaws (ONJ) in mice after extraction of teeth with periradicular disease. Bone 90:133–141

    PubMed  PubMed Central  Google Scholar 

  19. Sun Y, Kaur K, Kanayama K, Morinaga K, Park S, Hokugo A, Kozlowska A, McBride WH, Li J, Jewett A, Nishimura I (2016) Plasticity of Myeloid Cells during Oral Barrier Wound Healing and the Development of Bisphosphonate-related Osteonecrosis of the Jaw. J Biol Chem 291:20602–20616

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Kuroshima S, Sasaki M, Nakajima K, Tamaki S, Hayano H, Sawase T (2018) Transplantation of noncultured stromal vascular fraction cells of adipose tissue ameliorates osteonecrosis of the jaw-like lesions in mice. J Bone Miner Res 33:154–166

    CAS  PubMed  Google Scholar 

  21. Bi Y, Gao Y, Ehirchiou D, Cao C, Kikuiri T, Le A, Shi S, Zhang L (2010) Bisphosphonates cause osteonecrosis of the jaw-like disease in mice. Am J Pathol 177:280–290

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Kikuiri T, Kim I, Yamaza T, Akiyama K, Zhang Q, Li Y, Chen C, Chen W, Wang S, Le AD, Shi S (2010) Cell-based immunotherapy with mesenchymal stem cells cures bisphosphonate-related osteonecrosis of the jaw-like disease in mice. J Bone Miner Res 25:1668–1679

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhao Y, Wang L, Liu Y, Akiyama K, Chen C, Atsuta I, Zhou T, Duan X, ** Y, Shi S (2012) Technetium-99 conjugated with methylene diphosphonate ameliorates ovariectomy-induced osteoporotic phenotype without causing osteonecrosis in the jaw. Calcif Tissue Int 91:400–408

    CAS  PubMed  Google Scholar 

  24. Zandi M, Dehghan A, Malekzadeh H, Janbaz P, Ghadermazi K, Amini P (2016) Introducing a protocol to create bisphosphonate-related osteonecrosis of the jaw in rat animal model. J Craniomaxillofac Surg 44:271–278

    PubMed  Google Scholar 

  25. Allen MR (2015) Medication-related osteonecrosis of the jaw: basic and translational science updates. Oral Maxillofac Surg Clin North Am 27:497–508

    PubMed  Google Scholar 

  26. Aghaloo TL, Cheong S, Bezouglaia O, Kostenuik P, Atti E, Dry SM, Pirih FQ, Tetradis S (2014) RANKL inhibitors induce osteonecrosis of the jaw in mice with periapical disease. J Bone Miner Res 29:843–854

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Conte Neto N, Spolidorio LC, Andrade CR, Bastos S, Guimaraes M, Marcantonio E Jr (2013) Experimental development of bisphosphonate-related osteonecrosis of the jaws in rodents. Int J Exp Pathol 94:65–73

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Otto S, Pautke C, Martin Jurado O, Nehrbass D, Stoddart MJ, Ehrenfeld M, Zeiter S (2017) Further development of the MRONJ minipig large animal model. J Craniomaxillofac Surg 45:1503–1514

    PubMed  Google Scholar 

  29. Morita M, Iwasaki R, Sato Y, Kobayashi T, Watanabe R, Oike T, Nakamura S, Keneko Y, Miyamoto K, Ishihara K, Iwakura Y, Ishii K, Matsumoto M, Nakamura M, Kawana H, Nakagawa T, Miyamoto T (2017) Elevation of pro-inflammatory cytokine levels following anti-resorptive drug treatment is required for osteonecrosis development in infectious osteomyelitis. Sci Rep 7:46322

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Oike T, Kanagawa H, Sato Y, Kobayashi T, Nakatsukasa H, Miyamoto K, Nakamura S, Kaneko Y, Kobayashi S, Harato K, Yoshimura A, Iwakura Y, Takeuchi T, Matsumoto M, Nakamura M, Niki Y, Miyamoto T (2018) IL-6, IL-17 and Stat3 are required for auto-inflammatory syndrome development in mouse. Sci Rep 8:15783

    PubMed  PubMed Central  Google Scholar 

  31. Mori T, Sato Y, Miyamoto K, Kobayashi T, Shimizu T, Kanagawa H, Katsuyama E, Fujie A, Hao W, Tando T, Iwasaki R, Kawana H, Morioka H, Matsumoto M, Saya H, Toyama Y, Miyamoto T (2014) TNFalpha promotes osteosarcoma progression by maintaining tumor cells in an undifferentiated state. Oncogene 33:4236–4241

    CAS  PubMed  Google Scholar 

  32. Brunner JS, Vulliard L, Hofmann M, Kieler M, Lercher A et al (2020) Environmental arginine controls multinuclear giant cell metabolism and formation. Nat Commun 11:431

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Gurt I, Artsi H, Cohen-Kfir E, Hamdani G, Ben-Shalom G, Feinstein B, El-Haj M, Dresner-Pollak R (2015) The Sirt1 activators SRT2183 and SRT3025 inhibit RANKL-induced osteoclastogenesis in bone marrow-derived macrophages and down-regulate Sirt3 in Sirt1 null cells. PLoS ONE 10:e0134391

    PubMed  PubMed Central  Google Scholar 

  34. Sato Y, Miyauchi Y, Yoshida S, Morita M, Kobayashi T, Kanagawa H, Katsuyama E, Fujie A, Hao W, Tando T, Watanabe R, Miyamoto K, Morioka H, Matsumoto M, Toyama Y, Miyamoto T (2014) The vitamin D analogue ED71 but Not 1,25(OH)2D3 targets HIF1α protein in osteoclasts. PLoS ONE 9:e111845–e111845

    PubMed  PubMed Central  Google Scholar 

  35. Katsuyama E, Miyamoto H, Kobayashi T, Sato Y, Hao W, Kanagawa H, Fujie A, Tando T, Watanabe R, Morita M, Miyamoto K, Niki Y, Morioka H, Matsumoto M, Toyama Y, Miyamoto T (2015) Interleukin-1 receptor-associated kinase-4 (IRAK4) promotes inflammatory osteolysis by activating osteoclasts and inhibiting formation of foreign body giant cells. J Biol Chem 290:716–726

    CAS  PubMed  Google Scholar 

  36. Saad F, Gleason DM, Murray R, Tchekmedyian S, Venner P, Lacombe L, Chin JL, Vinholes JJ, Goas JA, Zheng M (2004) Long-term efficacy of zoledronic acid for the prevention of skeletal complications in patients with metastatic hormone-refractory prostate cancer. J Natl Cancer Inst 96:879–882

    CAS  PubMed  Google Scholar 

  37. Rosen LS, Gordon DH, Dugan W Jr, Major P, Eisenberg PD, Provencher L, Kaminski M, Simeone J, Seaman J, Chen BL, Coleman RE (2004) Zoledronic acid is superior to pamidronate for the treatment of bone metastases in breast carcinoma patients with at least one osteolytic lesion. Cancer 100:36–43

    CAS  PubMed  Google Scholar 

  38. Lipton A, Fizazi K, Stopeck AT, Henry DH, Brown JE, Yardley DA, Richardson GE, Siena S, Maroto P, Clemens M, Bilynskyy B, Charu V, Beuzeboc P, Rader M, Viniegra M, Saad F, Ke C, Braun A, Jun S (2012) Superiority of denosumab to zoledronic acid for prevention of skeletal-related events: a combined analysis of 3 pivotal, randomised, phase 3 trials. Eur J Cancer 48:3082–3092

    CAS  PubMed  Google Scholar 

  39. Saad F, Brown JE, Van Poznak C, Ibrahim T, Stemmer SM, Stopeck AT, Diel IJ, Takahashi S, Shore N, Henry DH, Barrios CH, Facon T, Senecal F, Fizazi K, Zhou L, Daniels A, Carriere P, Dansey R (2012) Incidence, risk factors, and outcomes of osteonecrosis of the jaw: integrated analysis from three blinded active-controlled phase III trials in cancer patients with bone metastases. Ann Oncol 23:1341–1347

    CAS  PubMed  Google Scholar 

  40. Khan AA, Morrison A, Hanley DA, Felsenberg D, McCauley LK et al (2015) Diagnosis and management of osteonecrosis of the jaw: a systematic review and international consensus. J Bone Miner Res 30:3–23

    PubMed  Google Scholar 

  41. Allen MR (2009) Bisphosphonates and osteonecrosis of the jaw: moving from the bedside to the bench. Cells Tissues Organs 189:289–294

    CAS  PubMed  Google Scholar 

  42. Cheung A, Seeman E (2010) Teriparatide therapy for alendronate-associated osteonecrosis of the jaw. N Engl J Med 363:2473–2474

    CAS  PubMed  Google Scholar 

  43. Kwon YD, Lee DW, Choi BJ, Lee JW, Kim DY (2012) Short-term teriparatide therapy as an adjunctive modality for bisphosphonate-related osteonecrosis of the jaws. Osteoporos Int 23:2721–2725

    CAS  PubMed  Google Scholar 

  44. Harper RP, Fung E (2007) Resolution of bisphosphonate-associated osteonecrosis of the mandible: possible application for intermittent low-dose parathyroid hormone [rhPTH(1-34)]. J Oral Maxillofac Surg 65:573–580

    PubMed  Google Scholar 

  45. Miyamoto T, Ohneda O, Arai F, Iwamoto K, Okada S, Takagi K, Anderson DM, Suda T (2001) Bifurcation of osteoclasts and dendritic cells from common progenitors. Blood 98:2544–2554

    CAS  PubMed  Google Scholar 

  46. Kassem A, Henning P, Lundberg P, Souza PP, Lindholm C, Lerner UH (2015) Porphyromonas gingivalis stimulates bone resorption by enhancing RANKL (receptor activator of NF-κB ligand) through activation of toll-like receptor 2 in osteoblasts. J Biol Chem 290:20147–20158

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Kanagawa H, Niki Y, Kobayashi T, Sato Y, Katsuyama E, Fujie A, Hao W, Miyamoto K, Tando T, Watanabe R, Morita M, Morioka H, Matsumoto M, Toyama Y, Miyamoto T (2015) Mycobacterium tuberculosis promotes arthritis development through Toll-like receptor 2. J Bone Miner Metab 33:135–141

    CAS  PubMed  Google Scholar 

  48. Miyamoto K, Yoshida S, Kawasumi M, Hashimoto K, Kimura T et al (2011) Osteoclasts are dispensable for hematopoietic stem cell maintenance and mobilization. J Exp Med 208:2175–2181

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Kotian P, Boloor A, Sreenivasan S (2016) Study of adverse effect profile of parenteral zoledronic acid in female patients with osteoporosis. J Clin Diagn Res 10:04–06

    Google Scholar 

  50. Hewitt RE, Lissina A, Green AE, Slay ES, Price DA, Sewell AK (2005) The bisphosphonate acute phase response: rapid and copious production of proinflammatory cytokines by peripheral blood gd T cells in response to aminobisphosphonates is inhibited by statins. Clin Exp Immunol 139:101–111

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Park W, Kim NK, Kim MY, Rhee YM, Kim HJ (2010) Osteonecrosis of the jaw induced by oral administration of bisphosphonates in Asian population: five cases. Osteoporos Int 21:527–533

    CAS  PubMed  Google Scholar 

  52. Malden N, Beltes C, Lopes V (2009) Dental extractions and bisphosphonates: the assessment, consent and management, a proposed algorithm. Br Dent J 206:93–98

    CAS  PubMed  Google Scholar 

  53. Fedele S, Porter SR, D’Aiuto F, Aljohani S, Vescovi P, Manfredi M, Arduino PG, Broccoletti R, Musciotto A, Di Fede O, Lazarovici TS, Campisi G, Yarom N (2010) Nonexposed variant of bisphosphonate-associated osteonecrosis of the jaw: a case series. Am J Med 123:1060–1064

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

T. Miyamoto was supported by a grant-in-aid for Scientific Research in Japan and a grant from the Japan Agency for Medical Research and Development. Y. Sato and K. Miyamoto were supported by a grant-in-aid for Scientific Research in Japan. This study was supported in part by Tei**.

Author information

Authors and Affiliations

Authors

Contributions

Investigation: TS, YS, and TK; conceptualization: TM; data curation: SN, YK, EI, HO, HW, and KM; funding acquisition: RI, YS, KM, and TM; supervision: RI, MM, MN, SA, HK, and TN; writing: TM.

Corresponding author

Correspondence to Takeshi Miyamoto.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest with the contents of this article.

Ethical approval

Animals were maintained under specific pathogen-free conditions in animal facilities certified by the Keio University Institutional Animal Care and Use Committee, and animal protocols were approved by that committee. All animal studies were performed in accordance with Institutional Guidelines on Animal Experimentation at Keio University of The Keio University Institutional Animal Care and Use Committee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 517 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soma, T., Iwasaki, R., Sato, Y. et al. Tooth extraction in mice administered zoledronate increases inflammatory cytokine levels and promotes osteonecrosis of the jaw. J Bone Miner Metab 39, 372–384 (2021). https://doi.org/10.1007/s00774-020-01174-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-020-01174-2

Keywords

Navigation