Log in

Assessment of the effect of systemic delivery of sclerostin antibodies on Wnt signaling in distraction osteogenesis

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Sclerostin is a known inhibitor of the Wnt signaling pathway which is involved in osteogenesis and, when inactivated, stimulates bone formation. To our knowledge, this effect has not been studied in the context of distraction osteogenesis (DO). Tibial DO was conducted on a total of 24 wild-type mice, which were then divided into 2 groups—a saline injection group (control) and an anti-sclerostin (Scl-Ab) injection group (treatment). The mice in the treatment group received 100 mg/kg intravenous injections of the antibody weekly until killing. The 12 mice in each group were subdivided into four time points according to post-osteotomy time of killing—11 days (mid-distraction), 17 days (late distraction), 34 days (mid-consolidation) and 51 days (late consolidation), with 3 mice per subgroup. After killing, the tibia specimens were collected for immunohistochemical analysis. Our results show that the group injected with anti-sclerostin had an earlier peak (day 11) in the distraction phase of the osteogenic molecules involved in the Wnt signaling pathway in comparison to the placebo group. In addition, downregulation of the inhibitors of this pathway was noted in the treatment group when compared with the placebo group. Furthermore, LRP-5 showed a significant increase in expression in the treatment group. Sclerostin inhibition has a significant effect on the DO process through its effect on the Wnt pathway. This effect was evident through the decreased effect of sclerostin on LRP-5 and earlier upregulation of the osteogenic molecules involved in this pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Spain)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ilizarov GA (1989) The tension-stress effect on the genesis and growth of tissues. Part I. The influence of stability of fixation and soft-tissue preservation. Clin Orthop Relat Res 238:249–281

    Google Scholar 

  2. Ilizarov GA (1989) The tension-stress effect on the genesis and growth of tissues: Part II. The influence of the rate and frequency of distraction. Clin Orthop Relat Res 239:263–285

    Google Scholar 

  3. Rauch F, Lauzier D, Croteau S, Travers R, Glorieux FH, Hamdy R (2000) Temporal and spatial expression of bone morphogenetic protein-2, -4, and -7 during distraction osteogenesis in rabbits. Bone 27:453–459

    Article  PubMed  CAS  Google Scholar 

  4. Aronson J, Good B, Stewart C, Harrison B, Harp J (1990) Preliminary studies of mineralization during distraction osteogenesis. Clin Orthop Relat Res 43–49

  5. Paley D (1990) Problems, obstacles, and complications of limb lengthening by the Ilizarov technique. Clin Orthop Relat Res 81–104

  6. Ghadakzadeh S, Mekhail M, Aoude A, Hamdy R, Tabrizian M (2016) Small players ruling the hard game: siRNA in bone regeneration. J Bone Miner Res 31:475–487. doi:10.1002/jbmr.2816

    Article  PubMed  CAS  Google Scholar 

  7. Makhdom AM, Hamdy RC (2013) The role of growth factors on acceleration of bone regeneration during distraction osteogenesis (in eng). Tissue Eng Part B Rev 19:442–453. doi:10.1089/ten.TEB.2012.0717

    Article  PubMed  CAS  Google Scholar 

  8. Chen Y, Alman BA (2009) Wnt pathway, an essential role in bone regeneration. J Cell Biochem 106:353–362. doi:10.1002/jcb.22020

    Article  PubMed  CAS  Google Scholar 

  9. Kasaai B, Moffatt P, Al-Salmi L, Lauzier D, Lessard L, Hamdy RC (2012) Spatial and temporal localization of WNT signaling proteins in a mouse model of distraction osteogenesis. J Histochem Cytochem 60:219–228. doi:10.1369/0022155411432010

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Baron R, Hesse E (2012) Update on bone anabolics in osteoporosis treatment: rationale, current status, and perspectives. J Clin Endocrinol Metab 97:311–325. doi:10.1210/jc.2011-2332

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Rachner TD, Khosla S, Hofbauer LC (2011) Osteoporosis: now and the future. Lancet 377:1276–1287. doi:10.1016/S0140-6736(10)62349-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Brunkow ME, Gardner JC, Van Ness J, Paeper BW, Kovacevich BR, Proll S, Skonier JE, Zhao L, Sabo PJ, Fu Y, Alisch RS, Gillett L, Colbert T, Tacconi P, Galas D, Hamersma H, Beighton P, Mulligan J (2001) Bone dysplasia sclerosteosis results from loss of the SOST gene product, a novel cystine knot-containing protein. Am J Hum Genet 68:577–589

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Balemans W, Ebeling M, Patel N, Van Hul E, Olson P et al (2001) Increased bone density in sclerosteosis is due to the deficiency of a novel secreted protein (SOST). Hum Mol Genet 10:537–543

    Article  PubMed  CAS  Google Scholar 

  14. Li X, Ominsky MS, Niu QT, Sun N, Daugherty B et al (2008) Targeted deletion of the sclerostin gene in mice results in increased bone formation and bone strength. J Bone Miner Res 23:860–869. doi:10.1359/jbmr.080216

    Article  PubMed  Google Scholar 

  15. Li C, Ominsky MS, Tan HL, Barrero M, Niu QT, Asuncion FJ, Lee E, Liu M, Simonet WS, Paszty C, Ke HZ (2011) Increased callus mass and enhanced strength during fracture healing in mice lacking the sclerostin gene. Bone 49:1178–1185. doi:10.1016/j.bone.2011.08.012

    Article  PubMed  CAS  Google Scholar 

  16. Alzahrani MM, Rauch F, Hamdy RC (2015) Does sclerostin depletion stimulate fracture healing in a mouse model? Clin Orthop Relat Res. doi:10.1007/s11999-015-4640-z

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ominsky MS, Li C, Li X, Tan HL, Lee E, Barrero M, Asuncion FJ, Dwyer D, Han CY, Vlasseros F, Samadfam R, Jolette J, Smith SY, Stolina M, Lacey DL, Simonet WS, Paszty C, Li G, Ke HZ (2011) Inhibition of sclerostin by monoclonal antibody enhances bone healing and improves bone density and strength of nonfractured bones. J Bone Miner Res 26:1012–1021. doi:10.1002/jbmr.307

    Article  PubMed  CAS  Google Scholar 

  18. Ominsky MS, Vlasseros F, Jolette J, Smith SY, Stouch B et al (2010) Two doses of sclerostin antibody in cynomolgus monkeys increases bone formation, bone mineral density, and bone strength. J Bone Miner Res 25:948–959. doi:10.1002/jbmr.14

    Article  PubMed  CAS  Google Scholar 

  19. Eddleston A, Marenzana M, Moore AR, Stephens P, Muzylak M, Marshall D, Robinson MK (2009) A short treatment with an antibody to sclerostin can inhibit bone loss in an ongoing model of colitis. J Bone Miner Res 24:1662–1671. doi:10.1359/jbmr.090403

    Article  PubMed  CAS  Google Scholar 

  20. Marenzana M, Greenslade K, Eddleston A, Okoye R, Marshall D, Moore A, Robinson MK (2011) Sclerostin antibody treatment enhances bone strength but does not prevent growth retardation in young mice treated with dexamethasone. Arthritis Rheum 63:2385–2395. doi:10.1002/art.30385

    Article  PubMed  CAS  Google Scholar 

  21. Wang LC, Takahashi I, Sasano Y, Sugawara J, Mitani H (2005) Osteoclastogenic activity during mandibular distraction osteogenesis. J Dent Res 84:1010–1015

    Article  PubMed  CAS  Google Scholar 

  22. McMahon MS, Fukai N (2009) Cellular response to mechanical distraction-induced skeletal remodeling. Orthopedics 32:3

    Article  PubMed  Google Scholar 

  23. Hou B, Fukai N, Olsen BR (2007) Mechanical force-induced midpalatal suture remodeling in mice. Bone 40:1483–1493. doi:10.1016/j.bone.2007.01.019

    Article  PubMed  PubMed Central  Google Scholar 

  24. Li X, Niu QT, Warmington KS, Asuncion FJ, Dwyer D, Grisanti M, Han CY, Stolina M, Eschenberg MJ, Kostenuik PJ, Simonet WS, Ominsky MS, Ke HZ (2014) Progressive increases in bone mass and bone strength in an ovariectomized rat model of osteoporosis after 26 weeks of treatment with a sclerostin antibody. Endocrinology 155:4785–4797. doi:10.1210/en.2013-1905

    Article  PubMed  CAS  Google Scholar 

  25. Shah AD, Shoback D, Lewiecki EM (2015) Sclerostin inhibition: a novel therapeutic approach in the treatment of osteoporosis. Int J Womens Health 7:565–580. doi:10.2147/IJWH.S73244

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Makhdom AM, Rauch F, Lauzier D, Hamdy RC (2014) The effect of systemic administration of sclerostin antibody in a mouse model of distraction osteogenesis. J Musculoskelet Neuronal Interact 14:124–130

    PubMed  CAS  Google Scholar 

  27. Alam N, St-Arnaud R, Lauzier D, Rosen V, Hamdy RC (2009) Are endogenous BMPs necessary for bone healing during distraction osteogenesis? Clin Orthop Relat Res 467:3190–3198. doi:10.1007/s11999-009-1065-6

    Article  PubMed  PubMed Central  Google Scholar 

  28. Haque T, Hamade F, Alam N, Kotsiopriftis M, Lauzier D, St-Arnaud R, Hamdy RC (2008) Characterizing the BMP pathway in a wild type mouse model of distraction osteogenesis. Bone 42:1144–1153. doi:10.1016/j.bone.2008.01.028

    Article  PubMed  CAS  Google Scholar 

  29. Tay BK, Le AX, Gould SE, Helms JA (1998) Histochemical and molecular analyses of distraction osteogenesis in a mouse model. J Orthop Res 16:636–642. doi:10.1002/jor.1100160518

    Article  PubMed  CAS  Google Scholar 

  30. Campisi P, Hamdy RC, Lauzier D, Amako M, Rauch F, Lessard ML (2003) Expression of bone morphogenetic proteins during mandibular distraction osteogenesis. Plast Reconstr Surg 111:201–208. doi:10.1097/01.PRS.0000034932.99249.34 (discussion 209–210)

    Article  PubMed  Google Scholar 

  31. Haque T, Mandu-Hrit M, Rauch F, Lauzier D, Tabrizian M, Hamdy RC (2006) Immunohistochemical localization of bone morphogenetic protein-signaling Smads during long-bone distraction osteogenesis. J Histochem Cytochem 54:407–415. doi:10.1369/jhc.5A6738.2005

    Article  PubMed  CAS  Google Scholar 

  32. Kloen P, Lauzier D, Hamdy RC (2012) Co-expression of BMPs and BMP-inhibitors in human fractures and non-unions. Bone 51:59–68. doi:10.1016/j.bone.2012.03.032

    Article  PubMed  CAS  Google Scholar 

  33. Kloen P, Doty SB, Gordon E, Rubel IF, Goumans MJ, Helfet DL (2002) Expression and activation of the BMP-signaling components in human fracture nonunions. J Bone Joint Surg Am 84-A:1909–1918

    Article  PubMed  Google Scholar 

  34. Kloen P, Di Paola M, Borens O, Richmond J, Perino G, Helfet DL, Goumans MJ (2003) BMP signaling components are expressed in human fracture callus. Bone 33:362–371

    Article  PubMed  CAS  Google Scholar 

  35. Fuss M, Ehlers EM, Russlies M, Rohwedel J, Behrens P (2000) Characteristics of human chondrocytes, osteoblasts and fibroblasts seeded onto a type I/III collagen sponge under different culture conditions. A light, scanning and transmission electron microscopy study. Ann Anat 182:303–310. doi:10.1016/S0940-9602(00)80002-3

    Article  PubMed  CAS  Google Scholar 

  36. Jilka RL, Weinstein RS, Bellido T, Roberson P, Parfitt AM, Manolagas SC (1999) Increased bone formation by prevention of osteoblast apoptosis with parathyroid hormone. J Clin Invest 104:439–446. doi:10.1172/JCI6610

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Oldershaw RA (2012) Cell sources for the regeneration of articular cartilage: the past, the horizon and the future. Int J Exp Pathol 93:389–400. doi:10.1111/j.1365-2613.2012.00837.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Zhong N, Gersch RP, Hadjiargyrou M (2006) Wnt signaling activation during bone regeneration and the role of Dishevelled in chondrocyte proliferation and differentiation. Bone 39:5–16. doi:10.1016/j.bone.2005.12.008

    Article  PubMed  CAS  Google Scholar 

  39. Liu G, Vijayakumar S, Grumolato L, Arroyave R, Qiao H, Akiri G, Aaronson SA (2009) Canonical Wnts function as potent regulators of osteogenesis by human mesenchymal stem cells. J Cell Biol 185:67–75. doi:10.1083/jcb.200810137

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Augello A, De Bari C (2010) The regulation of differentiation in mesenchymal stem cells. Hum Gene Ther 21:1226–1238. doi:10.1089/hum.2010.173

    Article  PubMed  CAS  Google Scholar 

  41. Ghadakzadeh S, Kannu P, Whetstone H, Howard A, Alman BA (2016) beta-Catenin modulation in neurofibromatosis type 1 bone repair: therapeutic implications. FASEB J. doi:10.1096/fj.201500190RR

    Article  PubMed  Google Scholar 

  42. Alzahrani MM, Anam EA, Makhdom AM, Villemure I, Hamdy RC (2014) The effect of altering the mechanical loading environment on the expression of bone regenerating molecules in cases of distraction osteogenesis (in English). Front Endocrinol. doi:10.3389/fendo.2014.00214

    Article  Google Scholar 

  43. Drake MT, Farr JN (2014) Inhibitors of sclerostin: emerging concepts. Curr Opin Rheumatol 26:447–452. doi:10.1097/BOR.0000000000000073

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Compton JT, Lee FY (2014) A review of osteocyte function and the emerging importance of sclerostin. J Bone Joint Surg Am 96:1659–1668. doi:10.2106/JBJS.M.01096

    Article  PubMed  PubMed Central  Google Scholar 

  45. Perren SM (2014) Fracture healing: fracture healing understood as the result of a fascinating cascade of physical and biological interactions. Part I. An attempt to integrate observations from 30 years AO research. Acta Chir Orthop Traumatol Cech 81:355–364

    PubMed  CAS  Google Scholar 

  46. McDonald MM, Morse A, Mikulec K, Peacock L, Yu N, Baldock PA, Birke O, Liu M, Ke HZ, Little DG (2012) Inhibition of sclerostin by systemic treatment with sclerostin antibody enhances healing of proximal tibial defects in ovariectomized rats. J Orthop Res 30:1541–1548. doi:10.1002/jor.22109

    Article  PubMed  CAS  Google Scholar 

  47. Joeng KS, Schumacher CA, Zylstra-Diegel CR, Long F, Williams BO (2011) Lrp5 and Lrp6 redundantly control skeletal development in the mouse embryo. Dev Biol 359:222–229. doi:10.1016/j.ydbio.2011.08.020

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Larsson S (2016) Anti-sclerostin—is there an indication? Injury 47(Suppl 1):S31–S35. doi:10.1016/S0020-1383(16)30008-0

    Article  PubMed  Google Scholar 

  49. Burgers TA, Williams BO (2013) Regulation of Wnt/beta-catenin signaling within and from osteocytes. Bone 54:244–249. doi:10.1016/j.bone.2013.02.022

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Recker RR, Benson CT, Matsumoto T, Bolognese MA, Robins DA, Alam J, Chiang AY, Hu L, Krege JH, Sowa H, Mitlak BH, Myers SL (2015) A randomized, double-blind phase 2 clinical trial of blosozumab, a sclerostin antibody, in postmenopausal women with low bone mineral density. J Bone Miner Res 30:216–224. doi:10.1002/jbmr.2351

    Article  PubMed  CAS  Google Scholar 

  51. Matos LL, Trufelli DC, de Matos MG, da Silva Pinhal MA (2010) Immunohistochemistry as an important tool in biomarkers detection and clinical practice. Biomark Insights 5:9–20

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Novartis Institutes of Biomedical Research (NIBR) for the provision of the sclerostin antibody, which was generated in collaboration with MorphoSys AG. We are grateful to Guylaine Bedard for preparation of the figures. This study was supported by the Shriners of North America, The Canadian Institute for Health Research (Canada), University of Dammam (Dammam, Saudi Arabia) and King Abdulaziz University (Jeddah, Saudi Arabia).

Author information

Authors and Affiliations

Authors

Contributions

MM: Data collection, interpretation and manuscript preparation. AMM: Performed surgeries, data collection, interpretation and manuscript preparation. FR: Manuscript preparation and revision. DL: Immunohistochemical aspect and manuscript revision. MK: Immunohistochemical aspect and manuscript revision. SG: Manuscript preparation and final revision. RCH: Manuscript preparation and final revision.

Corresponding author

Correspondence to Mohammad M. Alzahrani.

Ethics declarations

Conflict of interest

There were no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Electronic supplementary material

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alzahrani, M.M., Makhdom, A.M., Rauch, F. et al. Assessment of the effect of systemic delivery of sclerostin antibodies on Wnt signaling in distraction osteogenesis. J Bone Miner Metab 36, 373–382 (2018). https://doi.org/10.1007/s00774-017-0847-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-017-0847-2

Keywords

Navigation