Log in

Pacific oyster polyamine oxidase: a protein missing link in invertebrate evolution

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Polyamine oxidases catalyse the oxidation of polyamines and acetylpolyamines and are responsible for the polyamine interconversion metabolism in animal cells. Polyamine oxidases from yeast can oxidize spermine, N 1-acetylspermine, and N 1-acetylspermidine, while in vertebrates two different enzymes, namely spermine oxidase and acetylpolyamine oxidase, specifically catalyse the oxidation of spermine, and N 1-acetylspermine/N 1-acetylspermidine, respectively. In this work we proved that the specialized vertebrate spermine and acetylpolyamine oxidases have arisen from an ancestor invertebrate polyamine oxidase with lower specificity for polyamine substrates, as demonstrated by the enzymatic activity of the mollusc polyamine oxidase characterized here. This is the first report of an invertebrate polyamine oxidase, the Pacific oyster Crassostrea gigas (CgiPAO), overexpressed as a recombinant protein. This enzyme was biochemically characterized and demonstrated to be able to oxidase both N 1-acetylspermine and spermine, albeit with different efficiency. Circular dichroism analysis gave an estimation of the secondary structure content and modelling of the three-dimensional structure of this protein and docking studies highlighted active site features. The availability of this pluripotent enzyme can have applications in crystallographic studies and pharmaceutical biotechnologies, including anticancer therapy as a source of hydrogen peroxide able to induce cancer cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AcSpd:

N 1-acetylspermidine

AcSpm:

N 1-acetylspermine

APAO:

N 1-acetylpolyamine oxidase

CgiPAO:

Crassostrea gigas polyamine oxidase

FAD:

Flavin adenine dinucleotide

FMN:

Flavin mononucleotide

H2O2 :

Hydrogen peroxide

PAO:

Polyamine oxidase

PAs:

Polyamines

Put:

Putrescine

Spd:

Spermidine

Spm:

Spermine

SMO:

Spermine oxidase

ZmPAO:

Maize polyamine oxidase

References

  • Adachi MS, Juarez PR, Fitzpatrick PF (2010) Mechanistic studies of human spermine oxidase: kinetic mechanism and pH effects. Biochemistry 49:386–392

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Agostinelli E, Arancia G, Dalla Vedova L, Belli F, Marra M, Salvi M, Toninello A (2004) The biological functions of polyamine oxidation products by amine oxidises: perspectives of clinical applications. Amino Acids 27:347–358

    Article  CAS  PubMed  Google Scholar 

  • Agostinelli E, Tempera G, Molinari A, Salvi M, Battaglia V, Toninello A, Arancia G (2007) The physiological role of biogenic amines redox reactions in mitochondria. New perspectives in cancer therapy. Amino Acids 33:175–187

    Article  CAS  PubMed  Google Scholar 

  • Agostinelli E, Condello M, Tempera G, Macone A, Bozzuto G, Ohkubo S, Calcabrini A, Arancia G, Molinari A (2009) The combined treatment with chloroquine and the enzymatic oxidation products of spermine overcomes multidrug resistance of melanoma M14 ADR2 cells: a new therapeutic approach. Int J Oncol 45:1109–1122

    Google Scholar 

  • Aliverti A, Curti B, Vanoni MA (1999) Identifying and quantitating FAD and FMN in simple and iron–sulfur-containing flavoproteins. Met Mol Biol 131:9–23

    CAS  Google Scholar 

  • Amendola R, Cervelli M, Fratini E, Polticelli F, Sallustio DE, Mariottini P (2009) Spermine metabolism and anticancer therapy. Curr Cancer Drug Targets 9:118–130

    Article  CAS  PubMed  Google Scholar 

  • Amendola R, Cervelli M, Fratini E, Sallustio DE, Tempera G, Ueshima T, Mariottini P, Agostinelli E (2013) Reactive oxygen species spermine metabolites generated from amine oxidases and radiation represent a therapeutic gain in cancer treatments. Int J Oncol 43:813–820

    CAS  PubMed  Google Scholar 

  • Amendola R, Cervelli M, Tempera G, Fratini E, Varesio L, Mariottini P, Agostinelli E (2014) Spermine metabolism and radiation-derived reactive oxygen species for future therapeutic implications in cancer: an additive or adaptive response. Amino Acids 46:487–498

    Article  CAS  PubMed  Google Scholar 

  • Andrade MA, Chacón P, Merlo JJ, Morán F (1993) Evaluation of secondary structure of proteins from UV circular dichroism using an unsupervised learning neural network. Prot Eng 6:383–390

    Article  CAS  Google Scholar 

  • Bellelli A, Cavallo S, Nicolini L, Cervelli M, Bianchi M, Mariottini P, Zelli M, Federico R (2004) Mouse spermine oxidase: a model of the catalytic cycle and its inhibition by N, N1-bis(2,3-butadienyl)-1,4-butanediamine. Biochem Biophys Res Commun 322:1–8

    Article  CAS  PubMed  Google Scholar 

  • Bianchi M, Amendola R, Federico R, Polticelli F, Mariottini P (2005) Two short protein domains are responsible for the nuclear localization of mouse spermine oxidase (mSMO)µ isoform. FEBS J 272:3052–3059

    Article  CAS  PubMed  Google Scholar 

  • Bianchi M, Polticelli F, Ascenzi P, Botta M, Federico R, Mariottini P, Cona A (2006) Inhibition of polyamine and spermine oxidases by polyamine analogues. FEBS J 273:1115–1123

    Article  CAS  PubMed  Google Scholar 

  • Binda C, Coda A, Angelini R, Federico R, Ascenzi P, Mattevi A (1999) A 30-angstrom-long U-shaped catalytic tunnel in the crystal structure of polyamine oxidase. Structure 7:265–276

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilising the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Capone C, Cervelli M, Angelucci E, Colasanti M, Macone A, Mariottini P, Persichini T (2013) A role for spermine oxidase as a mediator of reactive oxygen species production in HIV-Tat-induced neuronal toxicity. Free Radic Biol Med 63:99–107

    Article  CAS  PubMed  Google Scholar 

  • Casero RA Jr, Marton LJ (2007) Targeting polyamine metabolism and function in cancer and other hyperproliferative diseases. Nat Rev Drug Disc 6:373–390

    Article  CAS  Google Scholar 

  • Cervelli M, Polticelli F, Federico F, Mariottini P (2003) Heterologous expression and characterization of mouse spermine oxidase. J Biol Chem 278:5271–5276

    Article  CAS  PubMed  Google Scholar 

  • Cervelli M, Bellini A, Bianchi M, Marcocci L, Nocera S, Polticelli F, Federico R, Amendola R, Mariottini P (2004) Mouse spermine oxidase gene splice variants. Nuclear subcellular localization of a novel active isoform. Eur J Biochem 271:760–770

    Article  CAS  PubMed  Google Scholar 

  • Cervelli M, Bellavia G, Fratini E, Amendola R, Polticelli F, Barba M, Federico R, Signore F, Gucciardo G, Grillo R, Woster PM, Casero RA Jr, Mariottini P (2010) Spermine oxidase (SMO) activity in breast tumor tissues and biochemical analysis of the anticancer spermine analogues BENSpm and CPENSpm. BMC Cancer 10:555

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cervelli M, Amendola R, Polticelli F, Mariottini P (2012) Spermine oxidase: ten years after. Amino Acids 42:441–450

    Article  CAS  PubMed  Google Scholar 

  • Cervelli M, Salvi D, Polticelli F, Amendola R, Mariottini P (2013a) Structure-function relationships in the evolutionary framework of spermine oxidase. J Mol Evol 76:365–370

    Article  CAS  PubMed  Google Scholar 

  • Cervelli M, Bellavia G, D’Amelio M, Cavallucci V, Moreno S, Berger J, Nardacci R, Marcoli M, Maura G, Piacentini M, Amendola R, Cecconi F, Mariottini P (2013b) A new transgenic mouse model for studying the neurotoxicity of spermine oxidase dosage in the response to excitotoxic injury. PLoS One 8:e64810

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cervelli M, Angelucci E, Germani F, Amendola R, Mariottini P (2014a) Inflammation, carcinogenesis and neurodegeneration studies in transgenic animal models for polyamine research. Amino Acids 46:521–530

    Article  CAS  PubMed  Google Scholar 

  • Cervelli M, Angelucci E, Stano P, Leboffe L, Federico R, Antonini G, Mariottini P, Polticelli F (2014b) The Glu216/Ser218 pocket is a major determinant of spermine oxidase substrate specificity. Biochem J 461:453–459

    Article  CAS  PubMed  Google Scholar 

  • Chen SH, Su SY, Lo CZ, Chen KH, Huang TJ, Kuo BH, Lin CY (2009) PALM: a paralleled and integrated framework for phylogenetic inference with automatic likelihood model selectors. PLoS One 4:e8116

    Article  PubMed Central  PubMed  Google Scholar 

  • Deleage G, Geourjon C (1993) An interactive graphic program for calculating the secondary structure-content of proteins from circular-dichroism spectrum. Comput Appl Biosci 9:197–199

    CAS  PubMed  Google Scholar 

  • Edmonson DE, Tollin G (1971) Circular dichroism studies of the flavin chromophore and of the relation between redox properties and flavin environment in oxidases and dehydrogenases. Biochemistry 10:113–124

    Article  Google Scholar 

  • Huang Q, Liu Q, Hao Q (2005) Crystal structures of Fms1 and its complex with spermine reveal substrate specificity. J Mol Biol 348:951–959

    Article  CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature 277:680–685

    Article  Google Scholar 

  • Landry J, Sternglanz R (2003) Yeast Fms1 is a FAD-utilizing polyamine oxidase. Biochem Biophys Res Commun 303:771–776

    Article  CAS  PubMed  Google Scholar 

  • Larkin M, Blackshields G, Brown N, Chenna R, McGettigan P, McWilliam H, Valentin F, Wallace I, Wilm A, Lopez R, Thompson J, Gibson T, Higgins D (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  • McIntire WS, Hartman C (1993) In: Davison VL (ed) Principle and application of quinoproteins. Marcel Dekker Inc., New York, pp 97–171

  • Panopoulou G, Hennig S, Groth D, Krause A, Poustka AJ, Herwig R, Vingron M, Lehrach H (2003) New evidence for genome-wide duplications at the origin of vertebrates using an amphioxus gene set and completed animal genomes. Genome Res 13:1056–1066

    Article  PubMed Central  PubMed  Google Scholar 

  • Polticelli F, Basran J, Faso C, Cona A, Minervini G, Angelini R, Federico R, Scrutton N, Tavladoraki P (2005) Biochemistry 44:16108–16120

    Article  CAS  PubMed  Google Scholar 

  • Polticelli F, Salvi D, Mariottini P, Amendola R, Cervelli M (2012) Molecular evolution of the polyamine oxidase gene family in Metazoa. BMC Evol Biol 12:90

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ronquist F, Teslenko M, van der Mark P, Ayres D, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542

    Article  PubMed Central  PubMed  Google Scholar 

  • Roy A, Kucukural A, Zhang Y (2010) I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 5:725–738

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Simakov O, Marletaz F, Cho SJ, Edsinger-Gonzales E, Havlak P, Hellsten U, Kuo DH, Larsson T, Lv J, Arendt D, Savage R, Osoegawa K, de Jong P, Grimwood J, Chapman JA, Shapiro H, Aerts A, Otillar RP, Terry AY, Boore JL, Grigoriev IV, Lindberg DR, Seaver EC, Weisblat DA, Putnam NH, Rokhsar DS (2013) Insights into bilaterian evolution from three spiralian genomes. Nature 493:526–531

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sreerama N, Woody RW (2000) Estimation of protein secondary structure from circular dichroism spectra: comparison of CONTIN, SELCON and CDSSTR methods with an expand reference set. Anal Biochem 287:252–260

    Article  CAS  PubMed  Google Scholar 

  • Tavladoraki P, Cervelli M, Antonangeli F, Minervini G, Stano P, Federico R, Mariottini P, Polticelli F (2011) Probing mammalian spermine oxidase enzyme–substrate complex through molecular modeling, site-directed mutagenesis and biochemical characterization. Amino Acids 840:1115–1126

    Article  Google Scholar 

  • Thomas T, Thomas TJ (2001) Polyamines in cell growth and cell death: molecular mechanisms and therapeutic applications. Cell Mol Life Sci 2:244–258

    Article  Google Scholar 

  • Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J Comput Chem 31:455–461

    PubMed Central  CAS  PubMed  Google Scholar 

  • Van den Munckhof RJ, Denyn M, Tigchelaar-Gutter W, Schipper RG, Verhofstad AAJ, Van Noorden CJF, Frederiks WM (1995) In situ substrate specificity and ultrastructural localization of polyamine oxidase activity in unfixed rat tissues. J Histochem Cytochem 43:1155–1162

    Article  PubMed  Google Scholar 

  • Wallace HM, Fraser AV, Hughes A (2003) A perspective of polyamine metabolism. Biochem J 376:1–14

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Waterhouse A, Procter J, Martin D, Clamp M, Barton G (2009) Jalview version 2–a multiple sequence alignment editor and analysis workbench. Bioinformatics 25:1189–1191

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wu T, Yankovskaya V, William S, McIntire W (2003) Cloning, sequencing, and heterologous expression of the murine peroxisomal flavoprotein, N1-acetylated polyamine oxidase. J Biol Chem 278:20514–20525

    Article  CAS  PubMed  Google Scholar 

  • Xu D, Zhang J, Roy A, Zhang Y (2011) Automated protein structure modeling in CASP9 by I-TASSER pipeline combined with QUARK-based ab initio folding and FG-MD-based structure refinement. Proteins 79(S10):147–160

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang G, Fang X, Guo X, Li L, Luo R, Xu F, Yang P, Zhang L, Wang X, Qi H, **ong Z, Que H, **e Y, Holland PW, Paps J, Zhu Y, Wu F, Chen Y, Wang J, Peng C, Meng J, Yang L, Liu J, Wen B, Zhang N, Huang Z, Zhu Q, Feng Y, Mount A, Hedgecock D, Xu Z, Liu Y, Domazet-Loso T, Du Y, Sun X, Zhang S, Liu B, Cheng P, Jiang X, Li J, Fan D, Wang W, Fu W, Wang T, Wang B, Zhang J, Peng Z, Li Y, Li N, Wang J, Chen M, He Y, Tan F, Song X, Zheng Q, Huang R, Yang H, Du X, Chen L, Yang M, Gaffney PM, Wang S, Luo L, She Z, Ming Y, Huang W, Zhang S, Huang B, Zhang Y, Qu T, Ni P, Miao G, Wang J, Wang Q, Steinberg CE, Wang H, Li N, Qian L, Zhang G, Li Y, Yang H, Liu X, Wang J, Yin Y, Wang J (2012) The oyster genome reveals stress adaptation and complexity of shell formation. Nature 490:49–54

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We wish to thank the University of Roma Tre for financial support and Prof. Marco Oliverio (Sapienza University of Rome, Italy) for useful discussion.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuela Cervelli.

Additional information

Handling Editor: S. Beninati.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 10 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cervelli, M., Polticelli, F., Angelucci, E. et al. Pacific oyster polyamine oxidase: a protein missing link in invertebrate evolution. Amino Acids 47, 949–961 (2015). https://doi.org/10.1007/s00726-015-1924-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-015-1924-2

Keywords

Navigation