Log in

Multivesicular bodies differentiate exclusively in nutritive fast-dividing cells in Marcetia taxifolia galls

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Marcetia taxifolia (A. St.-Hil.) DC. hosts two gall morphotypes, a pistil-shaped gall induced by a Cecidomyiidae (Diptera) and a fusiform stem gall induced by a Lepidoptera. The cytological study of these galls aimed to answer how the difference in nutritive tissues of Diptera and Lepidoptera galls could be explained on cytological basis. The nutritive tissues of lepidopteran galls have a fast-dividing cell zone, the storage nutritive tissue, which replaces the cells of the typical nutritive tissue, where the larvae feed. The differentiation of multivesicular bodies in the plasma membrane occurred exclusively in these fast-dividing cells of the lepidopteran galls, evidencing the meristematic condition of such tissue. The accumulation of reactive oxygen species (ROS) analyzed in situ in the nutritive cells is not sufficient to induce programmed cell death (PCD), as the cells of M. taxifolia have plastoglobules and accumulate polyphenols and terpenoids, which are diagnostic defenses against oxidative stress. The two taxa of galling insects have different nutritional requirements, thus inducing specific cytoplasm-enriched cells on their nutritive tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Appezzato-Da-Glória B, Machado SR (2004) Ultrastructural analysis of in vitro direct and indirect organogenesis. Rev Bras Bot 27:429–437

    Google Scholar 

  • Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141:391–396

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Austin JR, Frost E, Vidi P, Kessler F, Staehelin A (2006) Plastoglobules are lipoprotein subcompartments of the chloroplast that are permanently coupled to thylakoid membranes and contain biosynthetic enzymes. Plant Cell 18:1693–1703

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bedetti CS, Ferreira BG, Castro NM, Isaias RMS (2013) The influence of parasitoidism on the anatomical and histochemical profiles of the host leaves on a galling Lepidoptera-Bauhinia ungulata system. Rev Bras Biociências 11:242–249

    Google Scholar 

  • Bréhélin C, Kessler F (2008) The plastoglobule: a bag full of lipid biochemistry tricks. Photochem Photobiol 84:1388–1394

    Article  PubMed  Google Scholar 

  • Bréhélin C, Kessler F, van Wijk KJ (2007) Plastoglobules: versatile lipoprotein particles in plastids. Trends Plant Sci 12:260–266

    Article  PubMed  Google Scholar 

  • Bronner R (1992) The role of nutritive cells in the nutrition of Cynipids and Cecidomyiids. In: Shorthouse JD, Rohfritsch O (eds) Biology of insect-induced galls. Oxford University Press, New York, pp 118–140

    Google Scholar 

  • Carmona D, Lajeunesse MJ, Johnson MTJ (2011) Plant traits that predict resistance to herbivores. Funct Ecol 25:358–367

    Article  Google Scholar 

  • Chafe SC (1974) Cell wall structure in the xylem parenchyma of Cryptomeria. Protoplasma 81:63–76

    Article  CAS  PubMed  Google Scholar 

  • Després L, David JP, Gallet C (2007) The evolutionary ecology of insect resistance to plant chemicals. Trends Ecol Evol 22:298–307

    Article  PubMed  Google Scholar 

  • Detoni M, Vasconcelos EG, Fontes ES, Aguiar JAK, Isaias RMS, Soares GLG (2010) Differential biochemical responses of Calliandra brevipes (Fabaceae, Mimosoidae) to galling behaviour by Tanaostigmodes ringueleti and T. mecanga (Hymenoptera, Tanaostigmatidae). Austr J Bot 58:280–285

    CAS  Google Scholar 

  • Dreger-Jauffret F, Shorthouse JD (1992) Diversity of gall-inducing insects and their galls. In: Shorthouse JD, Rohfritsch O (eds) Biology of insect-induced galls. Oxford University Press, New York, pp 8–33

    Google Scholar 

  • Evert RF (2006) Esau’s plant anatomy: meristems, cells, and tissues of the plant body: their structure, function and development, 3rd edn. John Wiley & Sons Inc, Hoboken

    Book  Google Scholar 

  • Ferreira BG, Isaias RMS (2013) Developmental stem anatomy and tissue redifferentiation induced by a galling Lepidoptera on Marcetia taxifolia (Melastomataceae). Botany 91:752–760

    Article  Google Scholar 

  • Ferreira BG, Isaias RMS (2014) Floral-like destiny induced by a galling Cecidomyiidae on the axillary buds of Marcetia taxifolia (Melastomataceae). Flora 209:391–400

    Article  Google Scholar 

  • Ferreira BG, Teixeira CT, Isaias RMS (2014) Efficiency of the polyethylene-glycol (PEG) embedding medium for plant histochemistry. J Histochem Cytochem 62:577–583

    Article  CAS  PubMed  Google Scholar 

  • Gardoni LCP, Isaias RMS, Vale FHA (2007) Morfologia e anatomia foliar de três morfotipos de Marcetia taxifolia (A. St.-Hil.) DC. (Melastomataceae) na Serra do Cipó, MG. Rev Bras Bot 30:487–500 Gonçalves SJMR, Isaias RMS, Vale FHA, Fernandes GW (2005) Sexual dimorphism of Pseudotectococcus rolliniae (Hemiptera: Coccoidea: Eriococcidae) influences gall morphology of Rollinia laurifolia Schltdl. (Annonaceae). Trop Zool 18:161–169

  • Heinrich G, Sawidis T, Ingolic E, Stabentheiner E, Pfeifhofer HW (2010) Ultrastructure of glandular hairs of Sigesbeckia jorullensis Kunth (Asteraceae). Isr J Plant Sci 58:297–308

    Article  Google Scholar 

  • Hori K (1992) Insect secretion and their effect on plant growth, with special reference to hemipterans. In: Shorthouse JD, Rohfritsch O (eds) Biology of insect-induced galls. Oxford University Press, New York, pp 157–170

    Google Scholar 

  • Isaias RMS, Oliveira DC, Carneiro RGS (2011) Role of Euphalerus ostreoides (Hemiptera: Psylloidea) in manipulating leaflet ontogenesis of Lonchocarpus muehlbergianus (Fabaceae). Botany 89:581–592

    Article  Google Scholar 

  • Isaias RMS, Carneiro RGS, Oliveira DC, Santos JC (2013) Illustrated and annotated checklist of Brazilian gall morphotypes. Neotropical Entomol 42:230–239

    Article  CAS  Google Scholar 

  • Karnovsky MJ (1965) A formaldehyde-glutaraldehyde fixative of high osmolarity for use in electron microscopy. J Cell Biol 27:137–138

    Google Scholar 

  • Kostoff D, Kendall J (1929) Studies on the structure and development of certain Cynipid galls. Biol Bull 56:402–458

    Article  Google Scholar 

  • Kraus JE, Arduin M (1997) Manual básico de métodos em morfologia vegetal. Editora da Universidade Federal Rural do Rio de Janeiro, Seropédica

  • Lev-Yadun S (2003) Stem cells in plants are differentiated too. Curr Top Plant Biol 4:93–102

    Google Scholar 

  • Møller IM, Jensen PE, Hansson A (2007) Oxidative modifications to cellular components in plants. Annu Rev Plant Biol 58:459–481

    Article  PubMed  Google Scholar 

  • Muravnik LE, Shavarda AL (2012) Leaf glandular trichomes in Empetrum nigrum: morphology, histochemistry, ultrastructure and secondary metabolites. Nord J Bot 30:470–481

    Article  Google Scholar 

  • Nyman T, Julkunen-Tiitto R (2000) Manipulation of the phenolic chemistry of willows by gall-inducing sawflies. Proc Natl Acad Sci U S A 97:13184–13187

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • O’Brien TP, McCully ME (1981) The study of plant structure: principles and selected methods. Termacarphi Pty Ltd, Melbourne

    Google Scholar 

  • O’Brien TP, Feder N, McCully ME (1964) Polychromatic staining of plant cell walls by toluidine blue O. Protoplasma 59:368–373

    Article  Google Scholar 

  • Oliveira DC, Isaias RMS (2010) Cytological and histochemical gradients induced by a sucking insect in galls of Aspidosperma australe Arg. Muell (Apocynaceae). Plant Sci 178:350–358

    Article  Google Scholar 

  • Oliveira DC, Magalhães TA, Carneiro RGS, Alvim MN, Isaias RMS (2010) Do Cecidomyiidae galls of Aspidosperma spruceanum (Apocynaceae) fit the pre-established cytological and histochemical patterns? Protoplasma 242:81–93

    Article  CAS  PubMed  Google Scholar 

  • Oliveira DC, Carneiro RGS, Magalhães TA, Isaias RMS (2011a) Cytological and histochemical gradients on two Copaifera langsdorffii Desf. (Fabaceae)–Cecidomyiidae gall systems. Protoplasma 248:829–837

    Article  CAS  PubMed  Google Scholar 

  • Oliveira DC, Isaias RMS, Moreira ASFP, Magalhães TA, Lemos-Filho JP (2011b) Is the oxidative stress caused by Aspidosperma spp. galls capable of altering leaf photosynthesis? Plant Sci 180:489–495

    Article  PubMed  Google Scholar 

  • Raman A, Ananthakrishnan TN (1983) Studies on some thrips (Thysanoptera: Insecta) induced galls. 2. Fine-structure of the nutritive zone. Proc Indian Nat Sci Acad 6:525–561

    Google Scholar 

  • Raman A, Dhileepan K (1999) Qualitative evaluation of damage by Epiblema strenuana (Lepidoptera: Tortricidae) to the weed Parthenium hysterophorus (Asteraceae). Ecol Popul Biol 92:717–723

    Google Scholar 

  • Raman A, Cruz ZT, Muniappan R, Reddy FVP (2007) Biology and host specificity of gall-inducing Acythopeus burkhartorum (Coleoptera: Curculionidae), a biological-control agent for the invasive weed Coccinia grandis (Cucurbitaceae) in Guam and Saipan. Tijdschr Entomol 150:181–191

    Article  Google Scholar 

  • Reynolds ES (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 17:208–212

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rohfritsch O (1978) Three-dimensional study of cell organelles in the nutritive tissue of a gall (Liposthenes glechomae L. on Glechoma hederacea L.). Protoplasma 95:297–307

    Article  Google Scholar 

  • Rohfritsch O (1992) Patterns in gall development. In: Shorthouse JD, Rohfritsch O (eds) Biology of insect-induced galls. Oxford University Press, New York, pp 60–86

    Google Scholar 

  • Rosseti S, Bonatti PM (2001) In situ histochemical monitoring of ozone-and TMV-induced reactive oxygen species in tobacco leaves. Plant Physiol Biochem 39:433–442

    Article  Google Scholar 

  • Shorthouse JD (1986) Significance of nutritive cells in insect galls. Proc Entomol Soc Wash 88:368–375

    Google Scholar 

  • Soares GLG, Isaias RMS, Gonçalves SJMR, Christiano JCS (2000) Alterações químicas induzidas por coccídeos galhadores (Coccoidea, Brachyscelidae) em folhas de Rollinia laurifolia Schdtl. (Annonaceae). Rev Bras Zoociências 2:103–116

    Google Scholar 

  • Staehelin LA (1997) The plant ER: a dynamic organelle composed of a large number of discrete functional domains. Plant J 11:1151–1165

    Article  CAS  PubMed  Google Scholar 

  • Taylor SH (1949) Initiation and development of the gall of Aylax glechomae on Nepeta hederacea. Am J Bot 36:222–230

    Article  CAS  Google Scholar 

  • Thelen JJ, Ohlrogge JB (2002) Metabolic engineering of fatty acid biosynthesis in plants. Metab Eng 4:12–21

    Article  CAS  PubMed  Google Scholar 

  • Thomas E, Konar RN, Street HE (1972) The fine structure of the embryogenic callus of Ranunculus sceleratus L. J Cell Sci 11:95–109

    CAS  PubMed  Google Scholar 

  • Van Doorn WG, Beers EP, Dangl JL, Franklin-Tong VE, Gallois P, Hara-Nishimura I, Jones AM, Kawai-Yamada M, Lam E, Mundy J, Mur LAJ, Petersen M, Smertenko A, Taliansky M, Van Breusegem F, Wolpert T, Woltering E, Zhivotovsky B, Bozhkov PV (2011) Morphological classification of plant cell deaths. Cell Death Differ 18:1241–1246

    Article  PubMed Central  PubMed  Google Scholar 

  • Vecchi C, Menezes NL, Oliveira DC, Ferreira BG, Isaias RMS (2013) The redifferentiation of nutritive cells in galls induced by Lepidoptera on Tibouchina pulchra (Cham.) Cogn. reveals predefined patterns of plant development. Protoplasma 250:1363–1368

    Article  CAS  PubMed  Google Scholar 

  • Vieira ACM, Kraus JE (2007) Biologia e estrutura da galha do pedicelo de Byrsonima sericea DC. (Malpighiaceae) induzida por Lepidoptera. Rev Bras Biociências 5:402–404

    Google Scholar 

  • Zhang GF, Staehelin LA (1992) Functional compartmentation of the Golgi apparatus of plant cells. Plant Physiol 99:1070–1083

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) for the financial support; Dr. Jane E. Kraus and Dr. Fernando H.A. Vale for useful comments on the results; and Dr. Thiago A. Magalhães and Centro de Microscopia/Universidade Federal de Minas Gerais (UFMG) for technical assistance.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosy M. S. Isaias.

Additional information

Handling Editor: Hanns H. Kassemeyer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferreira, B.G., Carneiro, R.G.S. & Isaias, R.M.S. Multivesicular bodies differentiate exclusively in nutritive fast-dividing cells in Marcetia taxifolia galls. Protoplasma 252, 1275–1283 (2015). https://doi.org/10.1007/s00709-015-0759-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-015-0759-8

Keywords

Navigation