Log in

The closed-form solutions for buckling and postbuckling behaviour of anisotropic shear deformable laminated doubly-curved shells by matching method with the boundary layer of shell buckling

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Based on a boundary layer theory of shell buckling, the semi-analytical solutions for nonlinear stability analysis of anisotropic laminated composite doubly-curved shells with rectangular planform subjected to lateral pressure are derived. A new shell model of arbitrary constant curvature and fibre stacking sequences but constant thickness is developed. The governing equations are based on an extended higher-order shear deformation shell theory with von Kármán-type of kinematic nonlinearity and including the effect on stiffness couplings. The nonlinear deformation and initial deflection of shells are both taken into account. The boundary layer equations of buckling for doubly-curved shells are introduced to match the asymptotic solutions satisfying the clamped or simply-supported boundary condition. The closed-form solutions for buckling and postbuckling analysis of an anisotropic shear deformable laminated doubly-curved panel are obtained by the two-step perturbation methods and the boundary layer theory for shell buckling, which is employed to determine interactive buckling loads and postbuckling equilibrium paths. At the same time, the internal quantitative relationship in the asymptotic sense between deflection and rotations of the normal to the middle surface is for the first time obtained. The influences of anisotropic lay-up, change in the stacking sequence, temperature variation, different types of elastic foundation and boundary condition on nonlinear stability behaviour are analysed and discussed. The study provides a good theoretical method for the load-carrying capacity design of composite shell structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Yamada, S.: Buckling analysis for design of pressurized cylindrical shell panels. Eng. Struct. 19(5), 352–359 (1997). https://doi.org/10.1016/S0141-0296(96)00093-4

    Article  Google Scholar 

  2. Han, B., Simitses, G.J.: Analysis of anisotropic laminated cylindrical shells subjected to destabilizing loads. Part II: Numer Results Compos. Struct. 19(2), 183–205 (1991). https://doi.org/10.1016/0263-8223(91)90022-Q

    Article  Google Scholar 

  3. Reddy, J.N.: Exact solutions of moderately thick laminated shells. J. Eng. Mech. 110(5), 794–809 (1984). https://doi.org/10.1061/(ASCE)0733-9399(1984)110:5(794)

    Article  Google Scholar 

  4. Fu, L., Waas, A.M.: Initial post-buckling behaviour of thick rings under uniform external hydrostatic pressure. J. Appl. Mech. 62(2), 338–345 (1995). https://doi.org/10.1115/1.2895936

    Article  MATH  Google Scholar 

  5. Simitses, G.J.: Buckling of moderately thick laminated cylindrical shells: a review. Compos. B Eng. 27(6), 581–587 (1996). https://doi.org/10.1016/1359-8368(95)00013-5

    Article  Google Scholar 

  6. Leissa, A.W., Chang, J.D.: Elastic deformation of thick, laminated composite shells. Compos. Struct. 35(2), 153–170 (1996). https://doi.org/10.1016/0263-8223(96)00028-1

    Article  Google Scholar 

  7. Qatu, M.S.: Accurate equations for laminated composite deep thick shells. Int. J. Solids Struct. 36(19), 2917–2941 (1999). https://doi.org/10.1016/S0020-7683(98)00134-6

    Article  MATH  Google Scholar 

  8. Amabili, M., Reddy, J.N.: A new non-linear higher-order shear deformation theory for large-amplitude vibrations of laminated doubly curved shells. Int. J. Nonlinear Mech. 45(4), 409–418 (2010). https://doi.org/10.1016/j.ijnonlinmec.2009.12.013

    Article  Google Scholar 

  9. Bahadori, R., Najafizadeh, M.M.: Free vibration analysis of two-dimensional functionally graded axisymmetric cylindrical shell on Winkler-Pasternak elastic foundation by First-order Shear Deformation Theory and using Navier-differential quadrature solution methods. Appl. Math. Model. 39(16), 4877–4894 (2015). https://doi.org/10.1016/j.apm.2015.04.012

    Article  MathSciNet  MATH  Google Scholar 

  10. Ikeda, K., Murota, K.: Asymptotic and probabilistic approach to buckling of structures and materials. Appl. Mech. Rev. (2008). https://doi.org/10.1115/1.2939583

    Article  Google Scholar 

  11. Caliri, M.F., Ferreira, A.J.M., Tita, V.: A review on plate and shell theories for laminated and sandwich structures highlighting the finite element method. Compos. Struct. 156, 63–77 (2016). https://doi.org/10.1016/j.compstruct.2016.02.036

    Article  Google Scholar 

  12. Singh, V.K., Mahapatra, T.R., Panda, S.K.: Nonlinear flexural analysis of single/doubly curved smart composite shell panels integrated with PFRC actuator. Eur. J. Mech. A. Solids 60, 300–314 (2016). https://doi.org/10.1016/j.euromechsol.2016.08.006

    Article  Google Scholar 

  13. Quan, T.Q., Cuong, N.H., Duc, N.D.: Nonlinear buckling and post-buckling of eccentrically oblique stiffened sandwich functionally graded double curved shallow shells. Aerosp. Sci. Technol. 90, 169–180 (2019). https://doi.org/10.1016/j.ast.2019.04.037

    Article  Google Scholar 

  14. Mikhasev, G., Botogova, M.: Effect of edge shears and diaphragms on buckling of thin laminated medium-length cylindrical shells with low effective shear modulus under external pressure. Acta Mech. 228(6), 2119–2140 (2017). https://doi.org/10.1007/s00707-017-1825-4

    Article  MathSciNet  MATH  Google Scholar 

  15. Shahgholian, D., Safarpour, M., Rahimi, A.R., et al.: Buckling analyses of functionally graded graphene-reinforced porous cylindrical shell using the Rayleigh-Ritz method. Acta Mech. 231, 1887–1902 (2020). https://doi.org/10.1007/s00707-020-02813-5

    Article  MathSciNet  MATH  Google Scholar 

  16. Dastjerdi, S., Akgöz, B., Civalek, Ö., et al.: Eremeyevde: On the non-linear dynamics of torus-shaped and cylindrical shell structures. Int. J. Eng. Sci. 156, 103371 (2020). https://doi.org/10.1016/j.ijengsci.2020.103371

    Article  MATH  Google Scholar 

  17. Phuong, N.T., Trung, N.T., Doan, C.V., et al.: Nonlinear thermomechanical buckling of FG-GRC laminated cylindrical shells stiffened by FG-GRC stiffeners subjected to external pressure. Acta Mech. 231, 5125–5144 (2020). https://doi.org/10.1007/s00707-020-02813-5

    Article  MathSciNet  MATH  Google Scholar 

  18. Shah, P.H., Batra, R.C.: Stress singularities and transverse stresses near edges of doubly curved laminated shells using TSNDT and stress recovery scheme. Eur. J. Mech. A. Solids 63, 68–83 (2017). https://doi.org/10.1016/j.euromechsol.2016.11.007

    Article  MathSciNet  MATH  Google Scholar 

  19. Panda, H.S., Sahu, S.K., Parhi, P.K.: Hygrothermal response on parametric instability of delaminated bidirectional composite flat panels. Eur. J. Mech. A. Solids 53, 268–281 (2015). https://doi.org/10.1016/j.euromechsol.2015.05.004

    Article  MathSciNet  MATH  Google Scholar 

  20. Ji, H.J., Li, L.F.: Numerical methods for thermally stressed shallow shell equations. J. Comput. Appl. Math. 362(15), 626–652 (2019). https://doi.org/10.1016/j.cam.2018.10.005

    Article  MathSciNet  MATH  Google Scholar 

  21. Carrera E., Brischetto S., Nali P.: Plates and Shells for Smart Structures: Classical and Advanced Theories for Modeling and Analysis. John Wiley & Sons, Ltd, (2011): i-xi. https://doi.org/10.1002/9781119950004

  22. Weaver, P.M., Driesen, J.R., Roberts, P.: Anisotropic effects in the compression buckling of laminated composite cylindrical shells. Compos. Sci. Technol. 62(1), 91–105 (2002). https://doi.org/10.1016/S0266-3538(01)00186-5

    Article  Google Scholar 

  23. Wong, K.F.W., Weaver, P.M.: Approximate solution for the compression buckling of fully anisotropic cylindrical shells. AIAA J. 43(12), 2639–2645 (2005). https://doi.org/10.2514/1.10924

    Article  Google Scholar 

  24. Qatu, M.S.: Vibration of Laminated Shells and Plates. Academic Press, Oxford (2004)

    MATH  Google Scholar 

  25. Reddy, J.N.: Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, 2nd edn. CRC Press, Boca Raton (2003)

    Book  Google Scholar 

  26. Kolahchi, R., Zhu, S., Keshtegar, B., et al.: Dynamic buckling optimization of laminated aircraft conical shells with hybrid nanocomposite material. Aerosp. Sci. Technol. 98, 105656 (2020). https://doi.org/10.1016/j.ast.2019.105656

    Article  Google Scholar 

  27. Paliwal, D.N., Pandey, R.K., Nath, T.: Free vibrations of circular cylindrical shell on Winkler and Pasternak foundations. Int. J. Press. Vessels Pip. 69(1), 79–89 (1996). https://doi.org/10.1016/0308-0161(95)00010-0

    Article  Google Scholar 

  28. Reddy, J.N., Liu, C.F.: A higher-order shear deformation theory of laminated elastic shells. Int. J. Eng. Sci. 23(3), 319–330 (1985). https://doi.org/10.1016/0020-7225(85)90051-5

    Article  MATH  Google Scholar 

  29. Li, Z., Lin, Z.: Non-linear buckling and postbuckling of shear deformable anisotropic laminated cylindrical shell subjected to varying external pressure loads. Compos. Struct. 92(2), 553–567 (2010). https://doi.org/10.1016/j.compstruct.2009.08.048

    Article  Google Scholar 

  30. Li, Z., Liu, T., Yang, D.: Postbuckling behavior of shear deformable anisotropic laminated cylindrical shell under combined external pressure and axial compression. Compos. Struct. 198, 84–108 (2018). https://doi.org/10.1016/j.compstruct.2018.05.064

    Article  Google Scholar 

  31. Batdorf S.B.: A simplified method of elastic-stability analysis for thin cylindrical shells[R]. NACA TR, 1947.

  32. Redekop, D., Makhoul, E.: Use of the differential quadrature method for the buckling analysis of cylindrical shell panels. Struct. Eng. Mech. 10(5), 451–462 (2000). https://doi.org/10.12989/sem.2000.10.5.451

    Article  Google Scholar 

  33. Shen, H.: Postbuckling of pressure-loaded shear deformable laminated cylindrical panels. Appl. Math. Mech. 24(4), 402–413 (2003). https://doi.org/10.1007/BF02439619

    Article  MATH  Google Scholar 

  34. Budiansky, B.: Notes on nonlinear shell theory. J. Appl. Mech. 35(2), 393–401 (1968). https://doi.org/10.1115/1.3601208

    Article  Google Scholar 

  35. Yuan, F.G., Hsieh, C.C.: Three-dimensional wave propagation in composite cylindrical shells. Compos. Struct. 42(2), 153–167 (1998). https://doi.org/10.1016/S0263-8223(98)00063-4

    Article  Google Scholar 

  36. Wang, X., Lu, G., **ao, D.G.: Non-linear thermal buckling for local delamination near the surface of laminated cylindrical shell. Int. J. Mech. Sci. 44(5), 947–965 (2002). https://doi.org/10.1016/S0020-7403(02)00028-0

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The work described in this paper is partially supported by the grants from the National Natural Science Foundation of China (Nos. 51775346, 52005334 and 51678360).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Min Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

In Eqs. (53)–(54)

$$\begin{aligned} C_{1} &= \tfrac{{\gamma _{{24}}^{2} + 2\gamma _{0} \gamma _{5} + \gamma _{0}^{2} }}{{C_{q} }},\;C_{2} = \tfrac{{2m^{2} n^{2} \beta ^{2} }}{{(g_{{210}}^{2} - g_{{220}}^{2} )}}\left[ {(m^{2} + \gamma _{0} n^{2} \beta ^{2} )g_{{210}} \pi _{3} + (g_{{210}}^{2} + g_{{220}}^{2} )\pi _{4} } \right],\;C_{3} = 1 - \tfrac{{g_{{210}} g_{{310}} - g_{{220}} g_{{320}} }}{{(m^{2} + \gamma _{0} n^{2} \beta ^{2} )g_{{210}} }}\varepsilon , \hfill \\ \Theta _{3} & = \tfrac{{\gamma _{{24}}^{2} - \gamma _{5}^{2} }}{{\gamma _{{24}}^{2} + 2\gamma _{0} \gamma _{5} + \gamma _{0}^{2} }}C_{1} \left[ {\varepsilon (\gamma _{{T2}} - \gamma _{5} \gamma _{{T1}} + \gamma _{{211}} \gamma _{{T12}} )\Delta T - \lambda _{q}^{{(0)}} } \right] + \tfrac{{\gamma _{{211}} }}{{\gamma _{{24}} }}\lambda _{s}^{{(0)}} , \hfill \\ \Theta _{4} & = \tfrac{1}{{C_{3} }}\left[ {C_{2} + \tfrac{{\gamma _{{24}}^{2} - \gamma _{5}^{2} }}{{\gamma _{{24}}^{2} + 2\gamma _{0} \gamma _{5} + \gamma _{0}^{2} }}C_{1} \lambda _{q}^{{(2)}} - \tfrac{{\gamma _{{211}} }}{{\gamma _{{24}} }}\lambda _{s}^{{(2)}} } \right], \hfill \\ \lambda _{q}^{{(0)}} &= \left\{ {\tfrac{{\gamma _{{24}} (m^{2} + \gamma _{0} n^{2} \beta ^{2} )^{2} g_{{210}} }}{{(1 + \mu )(g_{{210}}^{2} - g_{{220}}^{2} )}}} \right. + \tfrac{{\gamma _{{24}} (m^{2} + \gamma _{0} n^{2} \beta ^{2} )}}{{(1 + \mu )(g_{{210}}^{2} - g_{{220}}^{2} )}}\left[ {(g_{{210}} g_{{31}} + g_{{220}} g_{{32}} ) + \tfrac{{(m^{2} + \gamma _{0} n^{2} \beta ^{2} )(g_{{210}} g_{{310}} + g_{{220}} g_{{320}} )}}{{m^{2} (1 + \mu )}}} \right]\varepsilon \hfill \\ &\quad+ \tfrac{1}{{(1 + \mu )}}\left[ {g_{{110}} + F_{{11}} + \tfrac{{\gamma _{{14}} \gamma _{{24}} (m^{2} + \gamma _{0} n^{2} \beta ^{2} )}}{{(1 + \mu )m^{2} }}} \right.\tfrac{{g_{{31}} (g_{{210}} g_{{310}} + g_{{220}} g_{{320}} ) + g_{{32}} (g_{{210}} g_{{320}} + g_{{220}} g_{{310}} )}}{{g_{{210}}^{2} - g_{{220}}^{2} }} \hfill \\ &\quad \left. { - \tfrac{{\gamma _{{14}} \gamma _{{24}} \mu (m^{2} + \gamma _{0} n^{2} \beta ^{2} )^{2} }}{{(1 + \mu )m^{4} }}\tfrac{{2g_{{220}} g_{{310}} g_{{320}} + g_{{210}} (g_{{310}}^{2} + g_{{320}}^{2} )}}{{g_{{210}}^{2} - g_{{220}}^{2} }}} \right]\varepsilon ^{2} - \tfrac{\mu }{{m^{2} (1 + \mu )^{2} }}\left[ {(g_{{110}} g_{{310}} + g_{{120}} g_{{320}} } \right.) \hfill \\ &\quad + \tfrac{{\gamma _{{14}} \gamma _{{24}} (m^{2} + \gamma _{0} n^{2} \beta ^{2} )g_{{31}} }}{{(1 + \mu )m^{2} }}\tfrac{{2g_{{220}} g_{{310}} g_{{320}} + g_{{210}} (g_{{310}}^{2} + g_{{320}}^{2} )}}{{g_{{210}}^{2} - g_{{220}}^{2} }} + \tfrac{{\gamma _{{14}} \gamma _{{24}} (m^{2} + \gamma _{0} n^{2} \beta ^{2} )g_{{32}} }}{{(1 + \mu )m^{2} }}\tfrac{{g_{{220}} (g_{{310}}^{2} + g_{{320}}^{2} ) + 2g_{{210}} g_{{310}} g_{{320}} }}{{g_{{210}}^{2} - g_{{220}}^{2} }} \hfill \\ &\quad \left. { - \tfrac{{\gamma _{{14}} \gamma _{{24}} \mu (m^{2} + \gamma _{0} n^{2} \beta ^{2} )^{2} }}{{(1 + \mu )^{2} m^{6} }}\tfrac{{g_{{210}} g_{{310}} (g_{{310}}^{2} + 3g_{{320}}^{2} ) + g_{{220}} g_{{320}} (3g_{{310}}^{2} + g_{{320}}^{2} )}}{{g_{{210}}^{2} - g_{{220}}^{2} }}} \right]\varepsilon ^{3} + \tfrac{{\mu ^{2} }}{{m^{4} (1 + \mu )^{3} }}\left[ {g_{{110}} (g_{{310}}^{2} + g_{{320}}^{2} ) + 2g_{{120}} g_{{310}} g_{{320}} } \right.\hfill \\&\quad + \tfrac{{\gamma _{{14}} \gamma _{{24}} (m^{2} + \gamma _{0} n^{2} \beta ^{2} )g_{{31}} }}{{(1 + \mu )m^{2} }}\tfrac{{g_{{220}} g_{{320}} (3g_{{310}}^{2} + g_{{320}}^{2} ) + g_{{210}} g_{{310}} (g_{{310}}^{2} + 3g_{{320}}^{2} )}}{{g_{{210}}^{2} - g_{{220}}^{2} }} \hfill \\ &\quad + \tfrac{{\gamma _{{14}} \gamma _{{24}} (m^{2} + \gamma _{0} n^{2} \beta ^{2} )g_{{32}} }}{{(1 + \mu )}}\tfrac{{g_{{220}} g_{{310}} (g_{{310}}^{2} + 3g_{{320}}^{2} ) + g_{{210}} g_{{320}} (3g_{{310}}^{2} + g_{{320}}^{2} )}}{{g_{{210}}^{2} - g_{{220}}^{2} }}\left. {\left. {\tfrac{{4g_{{220}} g_{{310}} g_{{320}} (g_{{310}}^{2} + g_{{320}}^{2} ) + g_{{210}} (g_{{310}}^{4} + 6g_{{310}}^{2} g_{{320}}^{2} + g_{{320}}^{4} )}}{{g_{{210}}^{2} - g_{{220}}^{2} }}} \right]\varepsilon ^{4} } \right\}, \hfill \\ \end{aligned}$$
$$\begin{aligned} \lambda _{s}^{{(0)}} & = - \tfrac{1}{{2mn\beta }}\left\{ {\tfrac{{\gamma _{{24}} (m^{2} + \gamma _{0} n^{2} \beta ^{2} )^{2} g_{{220}} }}{{(1 + \mu )(g_{{210}}^{2} - g_{{220}}^{2} )}}} \right. + \tfrac{{\gamma _{{24}} (m^{2} + \gamma _{0} n^{2} \beta ^{2} )}}{{(1 + \mu )(g_{{210}}^{2} - g_{{220}}^{2} )}}\left[ {(g_{{220}} g_{{31}} + g_{{210}} g_{{32}} ) + \tfrac{{(m^{2} + \gamma _{0} n^{2} \beta ^{2} )(g_{{210}} g_{{320}} + g_{{220}} g_{{310}} )}}{{m^{2} (1 + \mu )}}} \right]\varepsilon \hfill \\ &\quad + \tfrac{1}{{(1 + \mu )}}\left[ {g_{{120}} + \tfrac{{\gamma _{{14}} \gamma _{{24}} (m^{2} + \gamma _{0} n^{2} \beta ^{2} )}}{{(1 + \mu )m^{2} }}\tfrac{{g_{{31}} (g_{{220}} g_{{310}} + g_{{210}} g_{{320}} ) + g_{{32}} (g_{{210}} g_{{310}} + g_{{220}} g_{{320}} )}}{{g_{{210}}^{2} - g_{{220}}^{2} }}} \right.\left. { - \tfrac{{\gamma _{{14}} \gamma _{{24}} \mu (m^{2} + \gamma _{0} n^{2} \beta ^{2} )^{2} }}{{(1 + \mu )m^{4} }}\tfrac{{2g_{{210}} g_{{310}} g_{{320}} + g_{{220}} (g_{{310}}^{2} + g_{{320}}^{2} )}}{{g_{{210}}^{2} - g_{{220}}^{2} }}} \right]\varepsilon ^{2} \hfill \\ &\quad - \tfrac{\mu }{{m^{2} (1 + \mu )^{2} }}\left[ {(g_{{110}} g_{{320}} + g_{{120}} g_{{310}} } \right.) + \tfrac{{\gamma _{{14}} \gamma _{{24}} (m^{2} + \gamma _{0} n^{2} \beta ^{2} )g_{{31}} }}{{(1 + \mu )m^{2} }}\tfrac{{2g_{{210}} g_{{310}} g_{{320}} + g_{{220}} (g_{{310}}^{2} + g_{{320}}^{2} )}}{{g_{{210}}^{2} - g_{{220}}^{2} }} \hfill \\ &\quad+ \tfrac{{\gamma _{{14}} \gamma _{{24}} (m^{2} + \gamma _{0} n^{2} \beta ^{2} )g_{{32}} }}{{(1 + \mu )m^{2} }}\tfrac{{g_{{210}} (g_{{310}}^{2} + g_{{320}}^{2} ) + 2g_{{220}} g_{{310}} g_{{320}} }}{{g_{{210}}^{2} - g_{{220}}^{2} }}\left. { - \tfrac{{\gamma _{{14}} \gamma _{{24}} \mu (m^{2} + \gamma _{0} n^{2} \beta ^{2} )^{2} }}{{(1 + \mu )^{2} m^{6} }}\tfrac{{g_{{220}} g_{{310}} (g_{{310}}^{2} + 3g_{{320}}^{2} ) + g_{{210}} g_{{320}} (3g_{{310}}^{2} + g_{{320}}^{2} )}}{{g_{{210}}^{2} - g_{{220}}^{2} }}} \right]\varepsilon ^{3} \hfill \\ &\quad + \tfrac{{\mu ^{2} }}{{m^{4} (1 + \mu )^{3} }}\left[ {g_{{120}} (g_{{310}}^{2} + g_{{320}}^{2} ) + 2g_{{110}} g_{{310}} g_{{320}} } \right. + \tfrac{{\gamma _{{14}} \gamma _{{24}} (m^{2} + \gamma _{0} n^{2} \beta ^{2} )g_{{31}} }}{{(1 + \mu )m^{2} }}\tfrac{{g_{{220}} g_{{310}} (g_{{310}}^{2} + 3g_{{320}}^{2} ) + g_{{210}} g_{{320}} (3g_{{310}}^{2} + g_{{320}}^{2} )}}{{g_{{210}}^{2} - g_{{220}}^{2} }} \hfill \\ &\quad+ \tfrac{{\gamma _{{14}} \gamma _{{24}} (m^{2} + \gamma _{0} n^{2} \beta ^{2} )g_{{32}} }}{{(1 + \mu )}}\tfrac{{g_{{220}} g_{{320}} (3g_{{310}}^{2} + g_{{320}}^{2} ) + g_{{210}} g_{{310}} (g_{{310}}^{2} + 3g_{{320}}^{2} )}}{{g_{{210}}^{2} - g_{{220}}^{2} }} - \tfrac{{\gamma _{{14}} \gamma _{{24}} \mu (m^{2} + \gamma _{0} n^{2} \beta ^{2} )^{2} }}{{(1 + \mu )^{2} m^{6} }}\left. {\left. {\tfrac{{4g_{{210}} g_{{310}} g_{{320}} (g_{{310}}^{2} + g_{{320}}^{2} ) + g_{{220}} (g_{{310}}^{4} + 6g_{{310}}^{2} g_{{320}}^{2} + g_{{320}}^{4} )}}{{g_{{210}}^{2} - g_{{220}}^{2} }}} \right]\varepsilon ^{4} } \right\}, \hfill \\ \lambda _{q}^{{(2)}} &= \tfrac{{2n^{2} \beta ^{2} g_{{210}}^{2} }}{{(1 + \mu )(g_{{210}}^{2} - g_{{220}}^{2} )}}\left\{ {(\pi _{1} + \pi _{3} )\left[ {\tfrac{{\gamma _{{24}} (m^{2} + \gamma _{0} n^{2} \beta ^{2} )^{2} (g_{{210}}^{2} + 3g_{{220}}^{2} )}}{{(g_{{210}}^{2} - g_{{220}}^{2} )g_{{210}} }}} \right.} \right.\left. { + \gamma _{{14}} \gamma _{{24}} \tfrac{{m^{4} }}{{g_{{210}} }}} \right]\left. { + (\pi _{2} + \pi _{4} )\tfrac{{\gamma _{{14}} m^{2} (1 + \mu )(g_{{210}}^{2} + g_{{220}}^{2} )}}{{g_{{210}}^{2} }}} \right\}, \hfill \\ \lambda _{s}^{{(2)}} &= - \tfrac{{2n^{2} \beta ^{2} g_{{210}}^{2} }}{{(1 + \mu )(g_{{210}}^{2} - g_{{220}}^{2} )}}\left\{ {(\pi _{1} + \pi _{3} )\left[ {\tfrac{{\gamma _{{24}} (m^{2} + \gamma _{0} n^{2} \beta ^{2} )^{2} g_{{220}} (3g_{{210}}^{2} + g_{{220}}^{2} )}}{{(g_{{210}}^{2} - g_{{220}}^{2} )g_{{210}}^{2} }}} \right.} \right.\left. { + \gamma _{{14}} \gamma _{{24}} \tfrac{{m^{4} g_{{220}} }}{{g_{{210}}^{2} }}} \right]\left. { + (\pi _{2} + \pi _{4} )\tfrac{{2\gamma _{{14}} m^{2} (1 + \mu )g_{{220}} }}{{g_{{210}} }}} \right\}, \hfill \\ \lambda _{q}^{{(T)}} &= \left( {\gamma _{{T1}} m^{2} + 6\gamma _{{T3}} mn\beta + \gamma _{{T2}} n^{2} \beta ^{2} } \right)\Delta T. \hfill \\ \end{aligned}$$
(55)

In the above equations (with \(g_{ij}\) and \(g_{ijk}\) defined as in Li and Lin [29]),

$$\begin{gathered} C_{b} = \gamma_{24} \left[ {(\gamma_{0} + \gamma_{5} )m^{2} + (\gamma_{24}^{2} + \gamma_{0} \gamma_{5} )n^{2} \beta^{2} } \right] \hfill \\ \quad\quad\quad+ \tfrac{2}{\pi }(\gamma_{24}^{2} - \gamma_{5}^{2} )\left[ {m^{2} (\vartheta_{1} \overline{b}_{01}^{(2)} - \varphi_{1} \overline{b}_{10}^{(2)} ) + n^{2} \beta^{2} (\vartheta_{2} \overline{b}_{01}^{(2)} - \varphi_{2} \overline{b}_{10}^{(2)} )} \right]\varepsilon^{1/2} , \hfill \\ F_{11} = K_{1} + K_{2} (m^{2} + n^{2} \beta^{2} ), \hfill \\ e_{11} = 4m^{2} ,\;e_{12} = - \tfrac{{4\gamma_{24} m^{2} (m^{2} + \gamma_{0} n^{2} \beta^{2} )g_{210} }}{{(1 + \mu )(m^{2} + \zeta_{1} n^{2} \beta^{2} )(g_{210}^{2} - g_{220}^{2} )}}, \hfill \\ e_{21} = 16m^{4} (1 + \gamma_{14} \gamma_{24} \gamma_{220} \varpi_{420} + \gamma_{14} \gamma_{24} \gamma_{230} \theta_{420} ),\;e_{22} = - 4\gamma_{24} m^{2} , \hfill \\ \chi_{11} = 4\gamma_{0} n^{2} \beta^{2} ,\;\chi_{12} = - \tfrac{{4\zeta_{1} \gamma_{24} n^{2} \beta^{2} (m^{2} + \gamma_{0} n^{2} \beta^{2} )g_{210} }}{{(1 + \mu )(m^{2} + \zeta_{1} n^{2} \beta^{2} )(g_{210}^{2} - g_{220}^{2} )}}, \hfill \\ \chi_{21} = 16n^{4} \beta^{4} (\gamma_{214} + \gamma_{14} \gamma_{24} \gamma_{223} \varpi_{302} + \gamma_{14} \gamma_{24} \gamma_{233} \theta_{302} ),\;\chi_{22} = - 4\gamma_{0} \gamma_{24} n^{2} \beta^{2} , \hfill \\ \xi_{1} = - \tfrac{{\gamma_{24} (1 + \mu )m^{2} n^{2} \beta^{2} (m^{2} + \gamma_{0} n^{2} \beta^{2} )}}{{g_{210} }},\;\xi_{2} = \tfrac{{\gamma_{24} (1 + 2\mu )m^{2} n^{2} \beta^{2} (g_{210}^{2} - g_{220}^{2} )}}{{2g_{210}^{2} }}, \hfill \\ \pi_{1} = \tfrac{{e_{11} \xi_{2} - e_{21} \xi_{1} }}{{e_{11} e_{22} - e_{12} e_{21} }},\;\pi_{2} = \tfrac{{e_{22} \xi_{1} - e_{12} \xi_{2} }}{{e_{11} e_{22} - e_{12} e_{21} }},\;\pi_{3} = \tfrac{{\chi_{11} \xi_{2} - \chi_{21} \xi_{1} }}{{\chi_{11} \chi_{22} - \chi_{12} \chi_{21} }},\;\pi_{4} = \tfrac{{\chi_{22} \xi_{1} - \chi_{12} \xi_{2} }}{{\chi_{11} \chi_{22} - \chi_{12} \chi_{21} }},\;\zeta_{1} = \tfrac{{\gamma_{24}^{2} + \gamma_{0} \gamma_{5} }}{{\gamma_{0} + \gamma_{5} }}, \hfill \\ \varpi_{302} = 4n^{2} \beta^{2} \tfrac{{\gamma_{223} (\gamma_{42} + \gamma_{432} 4n^{2} \beta^{2} ) - \gamma_{233} (\gamma_{32} + \gamma_{332} 4n^{2} \beta^{2} )}}{{(\gamma_{32} + \gamma_{322} 4n^{2} \beta^{2} )(\gamma_{42} + \gamma_{432} 4n^{2} \beta^{2} ) - (\gamma_{32} + \gamma_{332} 4n^{2} \beta^{2} )^{2} }}, \hfill \\ \theta_{302} = 4n^{2} \beta^{2} \tfrac{{\gamma_{223} (\gamma_{31} + \gamma_{322} 4n^{2} \beta^{2} ) - \gamma_{223} (\gamma_{32} + \gamma_{332} 4n^{2} \beta^{2} )}}{{(\gamma_{31} + \gamma_{322} 4n^{2} \beta^{2} )(\gamma_{42} + \gamma_{432} 4n^{2} \beta^{2} ) - (\gamma_{32} + \gamma_{332} 4n^{2} \beta^{2} )^{2} }}, \hfill \\ \varpi_{420} = 4m^{2} \tfrac{{\gamma_{220} (\gamma_{42} + \gamma_{430} 4m^{2} ) - \gamma_{230} (\gamma_{32} + \gamma_{330} 4m^{2} )}}{{(\gamma_{31} + \gamma_{320} 4m^{2} )(\gamma_{42} + \gamma_{430} 4m^{2} ) - (\gamma_{32} + \gamma_{330} 4m^{2} )^{2} }},\;\theta_{420} = 4m^{2} \tfrac{{\gamma_{230} (\gamma_{31} + \gamma_{320} 4m^{2} ) - \gamma_{220} (\gamma_{32} + \gamma_{330} 4m^{2} )}}{{(\gamma_{31} + \gamma_{320} 4m^{2} )(\gamma_{42} + \gamma_{430} 4m^{2} ) - (\gamma_{32} + \gamma_{330} 4m^{2} )^{2} }} ,\hfill \\ \end{gathered}$$
(56)
$$\begin{aligned} b_{1} &= (\gamma _{{320}} \gamma _{{430}} - \gamma _{{330}}^{2} )\left[ {\tfrac{{\gamma _{{14}} \gamma _{{24}} }}{{g_{{16}} }}} \right]^{{1/2}} ,\;c_{1} = \tfrac{1}{2}\gamma _{{14}} \gamma _{{24}} (\gamma _{{320}} \gamma _{{430}} - \gamma _{{330}}^{2} )\tfrac{{g_{{15}} }}{{g_{{16}} }}, \hfill \\ \vartheta _{1} & = [(b_{1} - c_{1} )/2]^{{1/2}} ,\;\varphi _{1} = [(b_{1} + c_{1} )/2]^{{1/2}} , \hfill \\ b_{2} &= \gamma _{0} (\gamma _{{322}} \gamma _{{432}} - \gamma _{{332}}^{2} )\left[ {\tfrac{{\gamma _{{14}} \gamma _{{24}} }}{{\bar{g}_{{16}} }}} \right]^{{1/2}} ,\;c_{2} = \tfrac{1}{2}\gamma _{0} \gamma _{{14}} \gamma _{{24}} (\gamma _{{322}} \gamma _{{432}} - \gamma _{{332}}^{2} )\tfrac{{\bar{g}_{{15}} }}{{\bar{g}_{{16}} \beta ^{2} }}, \hfill \\ \vartheta _{2} & = [(b_{2} - c_{2} )/2]^{{1/2}} ,\;\varphi _{2} = [(b_{2} + c_{2} )/2]^{{1/2}} , \hfill \\ C_{{16}} & = (\gamma _{{320}} \gamma _{{430}} - \gamma _{{330}}^{2} ) + \gamma _{{14}} \gamma _{{24}} \gamma _{{220}} (\gamma _{{220}} \gamma _{{430}} - \gamma _{{230}} \gamma _{{330}} ) + \gamma _{{14}} \gamma _{{24}} \gamma _{{230}} (\gamma _{{230}} \gamma _{{320}} - \gamma _{{220}} \gamma _{{330}} ), \hfill \\ C_{{17}} &= \gamma _{{240}} (\gamma _{{320}} \gamma _{{430}} - \gamma _{{330}}^{2} ) - \gamma _{{220}} (\gamma _{{310}} \gamma _{{430}} - \gamma _{{330}} \gamma _{{410}} ) - \gamma _{{230}} (\gamma _{{320}} \gamma _{{410}} - \gamma _{{310}} \gamma _{{330}} ), \hfill \\ C_{{18}} &= (\gamma _{{320}} \gamma _{{430}} - \gamma _{{330}}^{2} ), \hfill \\ \bar{C}_{{16}} &= (\gamma _{{322}} \gamma _{{432}} - \gamma _{{332}}^{2} ) + \gamma _{{14}} \gamma _{{24}} \gamma _{{223}} (\gamma _{{223}} \gamma _{{432}} - \gamma _{{233}} \gamma _{{332}} ) + \gamma _{{14}} \gamma _{{24}} \gamma _{{233}} (\gamma _{{233}} \gamma _{{322}} - \gamma _{{223}} \gamma _{{332}} ), \hfill \\ \bar{C}_{{17}} &= \gamma _{{244}} (\gamma _{{322}} \gamma _{{432}} - \gamma _{{332}}^{2} ) - \gamma _{{223}} (\gamma _{{313}} \gamma _{{432}} - \gamma _{{332}} \gamma _{{413}} ) - \gamma _{{233}} (\gamma _{{322}} \gamma _{{413}} - \gamma _{{313}} \gamma _{{332}} ), \hfill \\ \bar{C}_{{18}} &= (\gamma _{{322}} \gamma _{{432}} - \gamma _{{332}}^{2} ), \hfill \\ \end{aligned}$$
(57)
$$\begin{aligned} g_{{15}} &= \gamma _{{120}} (\gamma _{{220}} \gamma _{{430}} - \gamma _{{230}} \gamma _{{330}} ) + \gamma _{{130}} (\gamma _{{230}} \gamma _{{320}} - \gamma _{{220}} \gamma _{{330}} ) + \gamma _{{220}} (\gamma _{{310}} \gamma _{{430}} - \gamma _{{330}} \gamma _{{410}} ) \hfill \\ &\quad + \gamma _{{230}} (\gamma _{{320}} \gamma _{{410}} - \gamma _{{310}} \gamma _{{330}} ) - (\gamma _{{320}} \gamma _{{430}} - \gamma _{{330}}^{2} )(\gamma _{{140}} + \gamma _{{240}} ), \hfill \\ g_{{16}} &= \gamma _{{110}} (\gamma _{{320}} \gamma _{{430}} - \gamma _{{330}}^{2} ) - \gamma _{{120}} (\gamma _{{310}} \gamma _{{430}} - \gamma _{{330}} \gamma _{{410}} ) - \gamma _{{130}} (\gamma _{{320}} \gamma _{{410}} - \gamma _{{310}} \gamma _{{330}} ) \hfill \\ &\quad \times \left[ {(\gamma _{{320}} \gamma _{{430}} - \gamma _{{330}}^{2} ) + \gamma _{{14}} \gamma _{{24}} \gamma _{{220}} (\gamma _{{220}} \gamma _{{430}} - \gamma _{{230}} \gamma _{{330}} ) + \gamma _{{14}} \gamma _{{24}} \gamma _{{230}} (\gamma _{{230}} \gamma _{{320}} - \gamma _{{220}} \gamma _{{330}} )} \right] \hfill \\ &\quad + \gamma _{{14}} \gamma _{{24}} \left[ {\gamma _{{140}} (\gamma _{{320}} \gamma _{{430}} - \gamma _{{330}}^{2} ) - \gamma _{{120}} (\gamma _{{220}} \gamma _{{430}} - \gamma _{{230}} \gamma _{{330}} ) - \gamma _{{130}} (\gamma _{{230}} \gamma _{{320}} - \gamma _{{220}} \gamma _{{330}} )} \right] \hfill \\ &\quad \times \left[ {\gamma _{{240}} (\gamma _{{320}} \gamma _{{430}} - \gamma _{{330}}^{2} ) - \gamma _{{220}} (\gamma _{{310}} \gamma _{{430}} - \gamma _{{330}} \gamma _{{410}} ) - \gamma _{{230}} (\gamma _{{320}} \gamma _{{410}} - \gamma _{{310}} \gamma _{{330}} )} \right], \hfill \\ g_{{17}} & = \tfrac{{C_{{17}} }}{{C_{{16}} }},\;g_{{18}} = \tfrac{{C_{{18}} }}{{C_{{16}} }},\;g_{{19}} = - g_{{17}} - \tfrac{{\varphi _{1}^{2} - 3\vartheta _{1}^{2} }}{{b_{1}^{2} }}g_{{18}} ,\;g_{{20}} = g_{{17}} + \tfrac{{3\varphi _{1}^{2} - \vartheta _{1}^{2} }}{{b_{1}^{2} }}g_{{18}}, \hfill \\ \bar{g}_{{15}} &= \gamma _{{123}} (\gamma _{{223}} \gamma _{{432}} - \gamma _{{233}} \gamma _{{332}} ) + \gamma _{{133}} (\gamma _{{233}} \gamma _{{322}} - \gamma _{{223}} \gamma _{{332}} ) + \gamma _{{223}} (\gamma _{{313}} \gamma _{{432}} - \gamma _{{332}} \gamma _{{413}} ) \hfill \\ &\quad + \gamma _{{233}} (\gamma _{{322}} \gamma _{{413}} - \gamma _{{313}} \gamma _{{332}} ) - (\gamma _{{322}} \gamma _{{432}} - \gamma _{{332}}^{2} )(\gamma _{{144}} + \gamma _{{244}} ), \hfill \\ \bar{g}_{{16}} & = [\gamma _{{114}} (\gamma _{{322}} \gamma _{{432}} - \gamma _{{332}}^{2} ) - \gamma _{{123}} (\gamma _{{313}} \gamma _{{432}} - \gamma _{{332}} \gamma _{{413}} ) - \gamma _{{133}} (\gamma _{{322}} \gamma _{{413}} - \gamma _{{313}} \gamma _{{332}} )] \hfill \\ &\quad \times [(\gamma _{{322}} \gamma _{{432}} - \gamma _{{332}}^{2} ) + \gamma _{{14}} \gamma _{{24}} \gamma _{{223}} (\gamma _{{223}} \gamma _{{432}} - \gamma _{{233}} \gamma _{{332}} ) + \gamma _{{14}} \gamma _{{24}} \gamma _{{233}} (\gamma _{{233}} \gamma _{{322}} - \gamma _{{223}} \gamma _{{332}} )] \hfill \\ &\quad + \gamma _{{14}} \gamma _{{24}} [\gamma _{{144}} (\gamma _{{322}} \gamma _{{432}} - \gamma _{{332}}^{2} ) - \gamma _{{123}} (\gamma _{{223}} \gamma _{{432}} - \gamma _{{233}} \gamma _{{332}} ) - \gamma _{{133}} (\gamma _{{233}} \gamma _{{322}} - \gamma _{{223}} \gamma _{{332}} )] \hfill \\ &\quad \times [\gamma _{{244}} (\gamma _{{322}} \gamma _{{432}} - \gamma _{{332}}^{2} ) - \gamma _{{223}} (\gamma _{{313}} \gamma _{{432}} - \gamma _{{332}} \gamma _{{413}} ) - \gamma _{{233}} (\gamma _{{322}} \gamma _{{413}} - \gamma _{{313}} \gamma _{{332}} )], \hfill \\ \bar{g}_{{17}} & = \tfrac{{\bar{C}_{{17}} }}{{\bar{C}_{{16}} }},\;\bar{g}_{{18}} = \tfrac{{\bar{C}_{{18}} }}{{\bar{C}_{{16}} }},\;\bar{g}_{{19}} = - \bar{g}_{{17}} - \tfrac{{\varphi _{2}^{2} - 3\vartheta _{2}^{2} }}{{b_{2}^{2} }}\bar{g}_{{18}} ,\;\bar{g}_{{20}} = \bar{g}_{{17}} + \tfrac{{3\varphi _{2}^{2} - \vartheta _{2}^{2} }}{{b_{2}^{2} }}\bar{g}_{{18}}, \hfill \\ \end{aligned}$$
(57)

for the case of curved edges clamped:

$$\begin{aligned} \bar{a}_{{01}}^{{(1)}} &= a_{{01}}^{{(1)}} = 1,\;b_{{01}}^{{(2)}} = \gamma _{{24}} g_{{19}} ,\;b_{{10}}^{{(2)}} = \gamma _{{24}} \tfrac{{\vartheta _{1} }}{{\varphi _{1} }}g_{{20}} ,\;\bar{a}_{{10}}^{{(1)}} = \tfrac{{\vartheta _{2} }}{{\varphi _{2} }},\;\bar{b}_{{01}}^{{(2)}} = \gamma _{{24}} \bar{g}_{{19}} ,\;\bar{b}_{{10}}^{{(2)}} = \gamma _{{24}} \tfrac{{\vartheta _{2} }}{{\varphi _{2} }}\bar{g}_{{20}}. \hfill \\ \end{aligned} $$

for the case of curved edges simply supported

$$\begin{aligned} \bar{a}_{{01}}^{{(1)}} &= a_{{01}}^{{(1)}} = 1,\;a_{{10}}^{{(1)}} = \tfrac{1}{{2\vartheta _{1} \varphi _{1} }}\left[ {\tfrac{{g_{{17}} }}{{g_{{18}} }}b_{1}^{2} + c_{1} } \right],\;b_{{01}}^{{(2)}} = 0, \hfill \\ b_{{10}}^{{(2)}} &= - \tfrac{{\gamma _{{24}} }}{{2\vartheta _{1} \varphi _{1} }}\left[ {g_{{18}} + 2g_{{17}} c_{1} + \tfrac{{g_{{17}}^{2} }}{{g_{{18}}^{2} }}b_{1}^{2} } \right],\;\bar{a}_{{10}}^{{(1)}} = \tfrac{1}{{2\vartheta _{2} \varphi _{2} }}\left[ {\tfrac{{\bar{g}_{{17}} }}{{\bar{g}_{{18}} }}b_{2}^{2} + c_{2} } \right],\;\bar{b}_{{01}}^{{(2)}} = 0, \hfill \\ \bar{b}_{{10}}^{{(2)}} &= - \tfrac{{\gamma _{{24}} }}{{2\vartheta _{2} \varphi _{2} }}\left[ {\bar{g}_{{18}} + 2\bar{g}_{{17}} c_{2} + \tfrac{{\bar{g}_{{17}}^{2} }}{{\bar{g}_{{18}}^{2} }}b_{2}^{2} } \right]. \hfill \\ \end{aligned} $$

Appendix 2

In Eq. (51)

$$\begin{gathered} \Delta_{00} = \left| {\begin{array}{*{20}c} {r_{11} } & {r_{12} } & {r_{13} } & {r_{14} } \\ {r_{21} } & {r_{22} } & {r_{23} } & {r_{24} } \\ {r_{31} } & {r_{32} } & {r_{33} } & {r_{34} } \\ {r_{41} } & {a_{42} } & {r_{43} } & {r_{44} } \\ \end{array} } \right|,\;\Delta_{01} = \left| {\begin{array}{*{20}c} {e_{1} } & {r_{12} } & {r_{13} } & {r_{14} } \\ {e_{2} } & {r_{22} } & {r_{23} } & {r_{24} } \\ {e_{3} } & {r_{32} } & {r_{33} } & {r_{34} } \\ {e_{4} } & {r_{42} } & {r_{43} } & {r_{44} } \\ \end{array} } \right|,\;\Delta_{02} = \left| {\begin{array}{*{20}c} {r_{11} } & {r_{12} } & {e_{1} } & {r_{14} } \\ {r_{21} } & {r_{22} } & {e_{2} } & {r_{24} } \\ {r_{31} } & {r_{32} } & {e_{3} } & {r_{34} } \\ {r_{41} } & {r_{42} } & {e_{4} } & {r_{44} } \\ \end{array} } \right|, \hfill \\ \Delta_{03} = \left| {\begin{array}{*{20}c} {r_{11} } & {e_{1} } & {r_{13} } & {r_{14} } \\ {r_{21} } & {e_{2} } & {r_{23} } & {r_{24} } \\ {r_{31} } & {e_{3} } & {r_{33} } & {r_{34} } \\ {r_{41} } & {e_{4} } & {r_{43} } & {r_{44} } \\ \end{array} } \right|,\;\Delta_{04} = \left| {\begin{array}{*{20}c} {r_{11} } & {r_{12} } & {r_{13} } & {e_{1} } \\ {r_{21} } & {r_{22} } & {r_{23} } & {e_{2} } \\ {r_{31} } & {r_{32} } & {r_{33} } & {e_{3} } \\ {r_{41} } & {r_{42} } & {r_{43} } & {e_{4} } \\ \end{array} } \right|,\;\Delta_{05} = \left| {\begin{array}{*{20}c} {f_{1} } & {r_{12} } & {r_{13} } & {r_{14} } \\ {f_{2} } & {r_{22} } & {r_{23} } & {r_{24} } \\ {f_{3} } & {r_{32} } & {r_{33} } & {r_{34} } \\ {f_{4} } & {r_{42} } & {r_{43} } & {r_{44} } \\ \end{array} } \right|, \hfill \\ \Delta_{06} = \left| {\begin{array}{*{20}c} {r_{11} } & {r_{12} } & {f_{1} } & {r_{14} } \\ {r_{21} } & {r_{22} } & {f_{2} } & {r_{24} } \\ {r_{31} } & {r_{32} } & {f_{3} } & {r_{34} } \\ {r_{41} } & {r_{42} } & {f_{4} } & {r_{44} } \\ \end{array} } \right|,\;\Delta_{07} = \left| {\begin{array}{*{20}c} {f_{2} } & {r_{12} } & {r_{13} } & {r_{14} } \\ {f_{1} } & {r_{22} } & {r_{23} } & {r_{24} } \\ {f_{4} } & {r_{32} } & {r_{33} } & {r_{34} } \\ {f_{3} } & {r_{42} } & {r_{43} } & {r_{44} } \\ \end{array} } \right|,\;\Delta_{08} = \left| {\begin{array}{*{20}c} {r_{11} } & {r_{12} } & {f_{2} } & {r_{14} } \\ {r_{21} } & {r_{22} } & {f_{1} } & {r_{24} } \\ {r_{31} } & {r_{32} } & {f_{4} } & {r_{34} } \\ {r_{41} } & {r_{42} } & {f_{3} } & {r_{44} }, \\ \end{array} } \right|, \hfill \\ r_{11} = r_{22} = r_{34} = r_{43} = \gamma_{331} mn\beta ,\;r_{12} = r_{21} = r_{33} = r_{44} = \gamma_{32} + \gamma_{330} m^{2} + \gamma_{332} n^{2} \beta^{2} , \hfill \\ r_{13} = r_{24} = \gamma_{41} + \gamma_{430} m^{2} + \gamma_{432} n^{2} \beta^{2} ,\;r_{14} = r_{23} = \gamma_{431} mn\beta ,\;r_{31} = r_{42} = \gamma_{321} mn\beta , \hfill \\ r_{32} = r_{41} = \gamma_{31} + \gamma_{320} m^{2} + \gamma_{322} n^{2} \beta^{2} ,\;e_{1} = (\gamma_{231} m^{2} + \gamma_{233} n^{2} \beta^{2} )n\beta , \hfill \\ e_{1} = (\gamma_{231} m^{2} + \gamma_{233} n^{2} \beta^{2} )n\beta ,\;e_{3} = (\gamma_{221} m^{2} + \gamma_{223} n^{2} \beta^{2} )n\beta ,\;e_{4} = (\gamma_{220} m^{2} + \gamma_{222} n^{2} \beta^{2} )m, \hfill \\ f_{1} = - (\gamma_{41} - \gamma_{411} m^{2} - \gamma_{413} n^{2} \beta^{2} )n\beta ,\;f_{2} = - (\gamma_{32} - \gamma_{410} m^{2} - \gamma_{412} n^{2} \beta^{2} )m, \hfill \\ f_{3} = - (\gamma_{32} - \gamma_{311} m^{2} - \gamma_{313} n^{2} \beta^{2} )n\beta ,\;f_{4} = - (\gamma_{31} - \gamma_{310} m^{2} - \gamma_{312} n^{2} \beta^{2} )m. \hfill \\ \end{gathered} $$
(58)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, T., Li, ZM. & Qiao, P. The closed-form solutions for buckling and postbuckling behaviour of anisotropic shear deformable laminated doubly-curved shells by matching method with the boundary layer of shell buckling. Acta Mech 232, 3277–3303 (2021). https://doi.org/10.1007/s00707-021-02952-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-021-02952-3

Navigation