Log in

Fractional viscoplastic model for soils under compression

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Soils in the field are often subjected to time-dependent compression, where the induced shear strength and deformation could be different upon different loading rates. To capture the rate-dependent stress–strain behaviour of soils under compression, a stress-fractional viscoplastic model is developed in this study, based on Perzyna’s overstress theory. The viscoplastic flow direction of soil is modelled with a unit tensor obtained by performing fractional derivatives on the yielding surface. With the increase in the fractional order, the predicted compressive shear strength varies, and a transition from pure strain hardening to strain hardening and softening is observed. Additionally, as the strain rate increases, the predicted shear strength increases, which agrees well with the corresponding experimental observations. Further validation against a series of oedometer and triaxial test results under different strain-rate loads indicates that the fractional-order viscoplastic model can efficiently capture the rate-dependent behaviour of soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Biot, M.A.: Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range. J. Acoust. Soc. Am. 28(2), 168–178 (1956). https://doi.org/10.1121/1.1908239

    Article  MathSciNet  Google Scholar 

  2. Burridge, R., Keller, J.B.: Biot’s poroelasticity equations by homogenization. In: Burridge, R., Childress, S., Papanicolaou, G. (eds.) Macroscopic Properties of Disordered Media, pp. 51–57. Springer, Berlin (1982)

    Chapter  Google Scholar 

  3. Dvorkin, J., Nur, A.: Dynamic poroelasticity: a unified model with the squirt and the Biot mechanisms. Geophysics 58(4), 524–533 (1993). https://doi.org/10.1190/1.1443435

    Article  Google Scholar 

  4. Masson, Y.J., Pride, S.R.: Finite-difference modeling of Biot’s poroelastic equations across all frequencies. Geophysics 75(2), N33–N41 (2010). https://doi.org/10.1190/1.3332589

    Article  Google Scholar 

  5. Wenzlau, F., Müller, T.M.: Finite-difference modeling of wave propagation and diffusion in poroelastic media. Geophysics 74(4), T55–T66 (2009). https://doi.org/10.1190/1.3122928

    Article  Google Scholar 

  6. Burridge, R., Keller, J.B.: Poroelasticity equations derived from microstructure. J. Acoust. Soc. Am. 70(4), 1140–1146 (1981). https://doi.org/10.1121/1.386945

    Article  MATH  Google Scholar 

  7. Theodorakopoulos, D.D.: Dynamic analysis of a poroelastic half-plane soil medium under moving loads. Soil Dyn. Earthq. Eng. 23(7), 521–533 (2003). https://doi.org/10.1016/S0267-7261(03)00074-5

    Article  Google Scholar 

  8. Theodorakopoulos, D.D., Beskos, D.E.: Application of Biot’s poroelasticity to some soil dynamics problems in civil engineering. Soil Dyn. Earthq. Eng. 26(6), 666–679 (2006). https://doi.org/10.1016/j.soildyn.2006.01.016

    Article  Google Scholar 

  9. Bowen, R.M.: Incompressible porous media models by use of the theory of mixtures. Int. J. Eng. Sci. 18(9), 1129–1148 (1980). https://doi.org/10.1016/0020-7225(80)90114-7

    Article  MATH  Google Scholar 

  10. Bowen, R.M.: Compressible porous media models by use of the theory of mixtures. Int. J. Eng. Sci. 20(6), 697–735 (1982). https://doi.org/10.1016/0020-7225(82)90082-9

    Article  MATH  Google Scholar 

  11. Biot, M.A.: Theory of elasticity and consolidation for a porous anisotropic solid. J. Appl. Phys. 26(2), 182–185 (1955). https://doi.org/10.1063/1.1721956

    Article  MathSciNet  MATH  Google Scholar 

  12. Voyiadjis, G.Z., Song, C.R.: The Coupled Theory of Mixtures in Geomechanics with Applications. Springer, Berlin (2006)

    Google Scholar 

  13. Prévost, J.H.: Mechanics of continuous porous media. Int. J. Eng. Sci. 18(6), 787–800 (1980). https://doi.org/10.1016/0020-7225(80)90026-9

    Article  MATH  Google Scholar 

  14. Voyiadjis, G.Z., Abu-Farsakh, M.Y.: Coupled theory of mixtures for clayey soils. Comput. Geotech. 20(3), 195–222 (1997). https://doi.org/10.1016/S0266-352X(97)00003-7

    Article  Google Scholar 

  15. Voyiadjis, G.Z., Kim, D.: Finite element analysis of the piezocone test in cohesive soils using an elastoplastic–viscoplastic model and updated Lagrangian formulation. Int. J. Plast. 19(2), 253–280 (2003). https://doi.org/10.1016/S0749-6419(01)00072-9

    Article  MATH  Google Scholar 

  16. Voyiadjis, G.Z., Song, C.R.: A coupled micro-mechanical based model for saturated soils. Mech. Res. Commun. 32(5), 490–503 (2005). https://doi.org/10.1016/j.mechrescom.2005.02.011

    Article  MATH  Google Scholar 

  17. Voyiadjis, G.Z., Alsaleh, M.I., Alshibli, K.A.: Evolving internal length scales in plastic strain localization for granular materials. Int. J. Plast. 21(10), 2000–2024 (2005). https://doi.org/10.1016/j.ijplas.2005.01.008

    Article  MATH  Google Scholar 

  18. Zhu, H., Rish, J.W., Dass, W.C.: Constitutive relations for two-phase particulate materials with elastic binder. Comput. Geotech. 20(3), 303–322 (1997). https://doi.org/10.1016/S0266-352X(97)00008-6

    Article  Google Scholar 

  19. Desai, C.S., Zhang, D.: Viscoplastic model for geologic materials with generalized flow rule. Int. J. Numer. Anal. Methods Geomech. 11(6), 603–620 (1987). https://doi.org/10.1002/nag.1610110606

    Article  MATH  Google Scholar 

  20. Lei, D., Liang, Y., **ao, R.: A fractional model with parallel fractional Maxwell elements for amorphous thermoplastics. Phys. A Stat. Mech. Appl. 490, 465–475 (2018). https://doi.org/10.1016/j.physa.2017.08.037

    Article  MathSciNet  Google Scholar 

  21. Wu, Y., Zhou, X., Gao, Y., Zhang, L., Yang, J.: Effect of soil variability on bearing capacity accounting for non-stationary characteristics of undrained shear strength. Comput. Geotech. 110, 199–210 (2019). https://doi.org/10.1016/j.compgeo.2019.02.003

    Article  Google Scholar 

  22. Rahimi, M., Chan, D., Nouri, A.: Bounding surface constitutive model for cemented sand under monotonic loading. Int. J. Geomech. 16(2), 04015049 (2016). https://doi.org/10.1061/(ASCE)GM.1943-5622.0000534

    Article  Google Scholar 

  23. Tasiopoulou, P., Gerolymos, N.: Constitutive modelling of sand: a progressive calibration procedure accounting for intrinsic and stress-induced anisotropy. Géotechnique 66(9), 754–770 (2016). https://doi.org/10.1680/jgeot.15.P.284

    Article  Google Scholar 

  24. Gao, Y., Hang, L., He, J., Chu, J.: Mechanical behaviour of biocemented sands at various treatment levels and relative densities. Acta Geotech. 14(3), 697–707 (2018). https://doi.org/10.1007/s11440-018-0729-3

    Article  Google Scholar 

  25. **ao, R., Sun, H., Chen, W.: A finite deformation fractional viscoplastic model for the glass transition behavior of amorphous polymers. Int. J. Non-Linear Mech. 93, 7–14 (2017). https://doi.org/10.1016/j.ijnonlinmec.2017.04.019

    Article  Google Scholar 

  26. Yin, D., Duan, X., Zhou, X.: Fractional time-dependent deformation component models for characterizing viscoelastic Poisson’s ratio. Eur. J. Mech. A Solids 42, 422–429 (2013). https://doi.org/10.1016/j.euromechsol.2013.07.010

    Article  Google Scholar 

  27. Zhang, N., Zhang, Y., Gao, Y., Pak, R.Y.S., Yang, J.: Site amplification effects of a radially multi-layered semi-cylindrical canyon on seismic response of an earth and rockfill dam. Soil Dyn. Earthq. Eng. 116, 145–163 (2019). https://doi.org/10.1016/j.soildyn.2018.09.014

    Article  Google Scholar 

  28. Kimoto, S., Shahbodagh Khan, B., Mirjalili, M., Oka, F.: Cyclic elastoviscoplastic constitutive model for clay considering nonlinear kinematic hardening rules and structural degradation. Int. J. Geomech. 15(5), A4014005 (2013). https://doi.org/10.1061/(ASCE)GM.1943-5622.0000327

    Article  Google Scholar 

  29. Sumelka, W.: Fractional viscoplasticity. Mech. Res. Commun. 56, 31–36 (2014). https://doi.org/10.1016/j.mechrescom.2013.11.005

    Article  MATH  Google Scholar 

  30. Szymczyk, M., Nowak, M., Sumelka, W.: Numerical study of dynamic properties of fractional viscoplasticity model. Symmetry 10(7), 1–17 (2018). https://doi.org/10.3390/sym10070282

    Article  Google Scholar 

  31. Yin, J.-H., Graham, J.: Elastic viscoplastic modelling of the time-dependent stress–strain behaviour of soils. Can. Geotech. J. 36(4), 736–745 (1999). https://doi.org/10.1139/t99-042

    Article  Google Scholar 

  32. Yin, Z., Chang, C.S., Karstunen, M., Hicher, P.: An anisotropic elastic-viscoplastic model for soft clays. Int. J. Solids Struct. 47(5), 665–677 (2010). https://doi.org/10.1016/j.ijsolstr.2009.11.004

    Article  MATH  Google Scholar 

  33. Whittle, A.J., Kavvadas, M.J.: Formulation of MITE3 constitutive model for overconsolidated clays. J. Geotech. Eng. 120(1), 173–198 (1994). https://doi.org/10.1061/(ASCE)0733-9410(1994)120:1(173)

    Article  Google Scholar 

  34. Lade, P.V., Nelson, R.B., Ito, Y.M.: Nonassociated flow and stability of granular materials. J. Eng. Mech. 113(9), 1302–1318 (1987). https://doi.org/10.1061/(ASCE)0733-9399(1987)113:9(1302)

    Article  Google Scholar 

  35. Sumelka, W., Nowak, M.: Non-normality and induced plastic anisotropy under fractional plastic flow rule: a numerical study. Int. J. Numer. Anal. Methods Geomech. 40(5), 651–675 (2016). https://doi.org/10.1002/nag.2421

    Article  Google Scholar 

  36. Sun, Y., **ao, Y.: Fractional order plasticity model for granular soils subjected to monotonic triaxial compression. Int. J. Solids Struct. 118–119, 224–234 (2017). https://doi.org/10.1016/j.ijsolstr.2017.03.005

    Article  Google Scholar 

  37. Sun, Y., Sumelka, W.: State-dependent fractional plasticity model for the true triaxial behaviour of granular soil. Arch. Mech. 71(1), 23–47 (2019). https://doi.org/10.24423/aom.3084

    Article  Google Scholar 

  38. Schofield, A., Wroth, P.: Critical State Soil Mechanics. McGraw-Hill, London (1968)

    Google Scholar 

  39. Lu, D., Liang, J., Du, X., Ma, C., Gao, Z.: Fractional elastoplastic constitutive model for soils based on a novel 3D fractional plastic flow rule. Comput. Geotech. 105, 277–290 (2019). https://doi.org/10.1016/j.compgeo.2018.10.004

    Article  Google Scholar 

  40. Perzyna, P.: The constitutive equations for rate sensitive plastic materials. Q. Appl. Math. 20(4), 321–332 (1963). https://doi.org/10.1090/qam/144536

    Article  MathSciNet  MATH  Google Scholar 

  41. Wood, D.M.: Soil Behaviour and Critical State Soil Mechanics. Cambridge University Press, Cambridge (1991)

    Book  MATH  Google Scholar 

  42. Rezania, M., Taiebat, M., Poletti, E.: A viscoplastic SANICLAY model for natural soft soils. Comput. Geotech. 73, 128–141 (2016). https://doi.org/10.1016/j.compgeo.2015.11.023

    Article  Google Scholar 

  43. Sun, Y., Shen, Y.: Constitutive model of granular soils using fractional order plastic flow rule. Int. J. Geomech. 17(8), 04017025 (2017). https://doi.org/10.1061/(ASCE)GM.1943-5622.0000904

    Article  Google Scholar 

  44. Caputo, M.: Linear models of dissipation whose Q is almost frequency independent-II. Geophys. J. Int. 13(5), 529–539 (1967). https://doi.org/10.1111/j.1365-246X.1967.tb02303.x

    Article  Google Scholar 

  45. Kutter, B.L., Sathialingam, N.: Elastic-viscoplastic modelling of the rate-dependent behaviour of clays. Géotechnique 42(3), 427–441 (1992). https://doi.org/10.1680/geot.1992.42.3.427

    Article  Google Scholar 

  46. Zhang, F., Gao, Y.F., Wu, Y.X., Zhang, N.: Upper-bound solutions for face stability of circular tunnels in undrained clays. Géotechnique 68(1), 76–85 (2017). https://doi.org/10.1680/jgeot.16.T.028

    Article  Google Scholar 

  47. Leroueil, S., Kabbaj, M., Tavenas, F., Bouchard, R.: Stress-strain-strain rate relation for the compressibility of sensitive natural clays. Géotechnique 35(2), 159–180 (1985). https://doi.org/10.1680/geot.1985.35.2.159

    Article  Google Scholar 

  48. Rangeard, D.: Identification des caractéristiques hydro-mécaniques d’une argile par analyse inverse d’essais pressiométriques. Ecole Centrale de Nantes (2002)

  49. Karim, M.R., Oka, F., Krabbenhoft, K., Leroueil, S., Kimoto, S.: Simulation of long-term consolidation behavior of soft sensitive clay using an elasto-viscoplastic constitutive model. Int. J. Numer. Anal. Methods Geomech. 37(16), 2801–2824 (2013). https://doi.org/10.1002/nag.2165

    Article  Google Scholar 

  50. Vaid, Y.P., Campanella, R.G.: Time-dependent behavior of undisturbed clay. ASCE J. Geotech. Eng. Div. 103(7), 693–709 (1977)

    Google Scholar 

  51. Yin, Z.Y., Karstunen, M.: Modelling strain-rate-dependency of natural soft clays combined with anisotropy and destructuration. Acta Mech. Solida Sin. 24(3), 216–230 (2011). https://doi.org/10.1016/S0894-9166(11)60023-2

    Article  Google Scholar 

Download references

Acknowledgements

The invaluable inspiration from Prof. Wen Chen is highly appreciated. The financial support provided by the National Natural Science Foundation of China (Grant Nos. 41630638, 51808191), the National Key Basic Research Program of China (“973” Program) (Grant No. 2015CB057901), and the Humboldt Foundation is also appreciated. The second author also acknowledges the support of the National Science Centre, Poland, under Grant No. 2017/27/B/ST8/00351.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yifei Sun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Sumelka, W. Fractional viscoplastic model for soils under compression. Acta Mech 230, 3365–3377 (2019). https://doi.org/10.1007/s00707-019-02466-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-019-02466-z

Navigation