Log in

Numerical analysis and insight of drop impacting dynamics upon a liquid film

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

A single liquid drop im**ing onto very thin spherical films was observed with the aid of a high-speed digital camera at \(10^{4}\) frames per second. The liquid sheet produced at a high impact velocity was mainly concerned. Also more features and insights of the sheet were numerically studied using the coupled level set and volume of fluid method, considering effects of four non-dimensional parameters: Reynolds number, Weber number, dimensionless film thickness and drop–film curvature ratio. Results reveal that splashing can be suppressed by decreasing Reynolds number and Weber number. An increase in both the dimensionless film thickness and the film–drop curvature ratio is adverse to splashing onset. In addition, these four parameters can also greatly affect the geometrical shape and diameter of the sheet. In the second part, the air gap generated in the sheet–film contact neck region was investigated. It was noted that gas and liquid vortices produced near the liquid film surface render the film liquid to sink to form the air gap. Meanwhile, liquid accumulates inside the liquid sheet base gradually. Analysis in the velocity field suggests that the very thin preexisting film should be responsible for the vortex generation and the curvature ratio has minor effects on it, which is confirmed quantitatively as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tran, T., Staat, H.J.J., Susarrey-Arce, A., Foertsch, T.C., Van Houselt, A., Gardeniers, H.J.G.E., Prosperetti, A., Lohse, D., Sun, C.: Droplet impact on superheated micro-structured surfaces. Soft Matter 9, 3272–3282 (2013)

    Article  Google Scholar 

  2. Pan, Z., Weibel, J.A., Garimella, S.V.: Influence of surface wettability on transport mechanisms governing water droplet evaporation. Langmuir 30(32), 9726–9730 (2014)

    Article  Google Scholar 

  3. Guo, Y., Wei, L., Liang, G., Shen, S.: Simulation of droplet impact on liquid film with CLSVOF. Int. Commun. Heat Mass Transfer 53, 26–33 (2014)

    Article  Google Scholar 

  4. Juarez, G., Gastopoulos, T., Zhang, Y., Siegel, M.L., Arratia, P.E.: Splash control of drop impacts with geometric targets. Phys. Rev. E 85(2), 026319 (2012)

    Article  Google Scholar 

  5. Herbert, S., Fischer, S., Gambaryan-Roisman, T., Stephan, P.: Local heat transfer and phase change phenomena during single drop im**ement on a hot surface. Int. J. Heat Mass Transfer 61, 605–614 (2013)

    Article  Google Scholar 

  6. Negeed, E.R., Hidaka, S., Kohno, M., Takata, Y.: High speed camera investigation of the im**ement of single water droplets on oxidized high temperature surfaces. Int. J. Therm. Sci. 63, 1–14 (2013)

    Article  Google Scholar 

  7. Shen, S., Liang, G., Guo, Y., Liu, R., Mu, X.: Heat transfer performance and bundle-depth effect in horizontal-tube falling film evaporators. Desalin. Water Treat. 51(4–6), 830–836 (2013)

    Article  Google Scholar 

  8. Xu, Q., Li, Z., Wang, R., Zhu, S.: Coating and the impact of single droplet on the spherical surface. J. Tian** Univ. Sci. Technol. 28(1), 50–54 (2013). (In Chinese)

    Google Scholar 

  9. Hardalupas, Y., Taylor, A.M.K.P., Wilkins, J.H.: Experimental investigation of sub-millimetre droplet im**ement on to spherical surfaces. Int. J. Heat Fluid Flow 20(5), 477–485 (1999)

    Article  Google Scholar 

  10. Mitra, S., Sathe, M.J., Doroodchi, E., Utikar, R., Shah, M.K., Pareek, V., Joshi, J.B., Evans, G.M.: Droplet impact dynamics on a spherical particle. Chem. Eng. Sci. 100, 105–119 (2013)

    Article  Google Scholar 

  11. Chow, C.K., Attinger, D.: Visualization and Measurements of Microdroplet Impact Dynamics on a Curved Substrate. Paper presented at the 4th ASME_JSME Joint Fluids Engineering Conference, Hawaii, USA (2003)

  12. Bakshi, S., Roisman, I., Tropea, C.: Investigations on the impact of a drop onto a small spherical target. Phys. Fluids 19(3), 032102 (2007)

    Article  MATH  Google Scholar 

  13. Gunjal, P.R., Ranade, V.V., Chaudhari, R.V.: Experimental and computational study of liquid drop over flat and spherical surfaces. Catal. Today 79–80, 267–273 (2003)

    Article  Google Scholar 

  14. Hung, L.S., Yao, S.C.: Experimental investigation of the impaction of water droplets on cylindrical objects. Int. J. Multiph. Flow 25(8), 1545–1559 (1999)

    Article  MATH  Google Scholar 

  15. Pasandideh-Fard, M., Bussmann, M., Chandra, S., Mostaghimi, J.: Simulating droplet impact on a substrate of arbitrary shape. Atomization Sprays 11(4), 397–414 (2001)

    Article  Google Scholar 

  16. Shen, S., Bi, F., Guo, Y.: Simulation of droplets impact on curved surfaces with lattice Boltzmann method. Int. J. Heat Mass Transfer 55(23–24), 6938–6943 (2012)

    Article  Google Scholar 

  17. Yarin, A.L., Weiss, D.A.: Impact of drops on solid surfaces: self-similar capillary waves, and splashing as a new type of kinematic discontinuity. J. Fluid Mech. 283, 141–173 (1995)

    Article  Google Scholar 

  18. Coppola, G., Rocco, G., De Luca, L.: Insights on the impact of a plane drop on a thin liquid film. Phys. Fluids 23(2), 022105 (2011)

    Article  Google Scholar 

  19. Rocco, G., Coppola, G., De Luca, L.: Simulation of drop impact on a thin liquid film by means of the VOF method. Aerotecnica 89(1), 25–35 (2010)

    Google Scholar 

  20. Roisman, I.V., Tropea, C.: Impact of a drop onto a wetted wall: description of crown formation and propagation. J. Fluid Mech. 472, 373–397 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  21. Trujillo, M.F., Lee, C.F.: Modeling crown formation due to the splashing of a droplet. Phys. Fluids 13(9), 2503–2516 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  22. Cossali, G.E., Coghe, A., Marengo, M.: The impact of a single drop on a wetted solid surface. Exp. Fluids 22(6), 463–472 (1997)

    Article  Google Scholar 

  23. Vander Wal, R., Berger, G., Mozes, S.: Droplets splashing upon films of the same fluid of various depths. Exp. Fluids 40(1), 33–52 (2006)

    Article  Google Scholar 

  24. Cossali, G.E., Marengo, M., Coghe, A., Zhdanov, S.: The role of time in single drop splash on thin film. Exp. Fluids 36(6), 888–900 (2004)

    Article  Google Scholar 

  25. Wang, A.B., Chen, C.C.: Splashing impact of a single drop onto very thin liquid films. Phys. Fluids 12(9), 2155–2158 (2000)

    Article  MATH  Google Scholar 

  26. Rieber, M., Frohn, A.: A numerical study on the mechanism of splashing. Int. J. Heat Fluid Flow 20(5), 455–461 (1999)

    Article  Google Scholar 

  27. Lee, S., Hur, N., Kang, S.: A numerical analysis of drop impact on liquid film by using a level set method. J. Mech. Sci. Technol. 25(10), 2567–2572 (2011)

    Article  Google Scholar 

  28. Nikolopoulos, N., Theodorakakos, A., Bergeles, G.: Normal im**ement of a droplet onto a wall film: a numerical investigation. Int. J. Heat Fluid Flow 26(1), 119–132 (2005)

    Article  MATH  Google Scholar 

  29. Nikolopoulos, N., Theodorakakos, A., Bergeles, G.: Three-dimensional numerical investigation of a droplet im**ing normally onto a wall film. J. Comput. Phys. 225(1), 322–341 (2007)

    Article  MATH  Google Scholar 

  30. Liang, G., Guo, Y., Shen, S., Yang, Y.: Crown behavior and bubble entrainment during a drop impact on a liquid film. Theor. Comput. Fluid Dyn. 28(2), 159–170 (2014)

    Article  Google Scholar 

  31. Liang, G., Guo, Y., Shen, S.: Gas properties on crown behavior and drop coalescence. Numer. Heat Transfer Part B 65(6), 537–553 (2014)

    Article  Google Scholar 

  32. Liang, G., Guo, Y., Yang, Y., Guo, S., Shen, S.: Special phenomena from a single liquid drop impact on wetted cylindrical surfaces. Exp. Therm. Fluid Sci. 51, 18–27 (2013)

    Article  Google Scholar 

  33. Liang, G., Yang, Y., Guo, Y., Zhen, N., Shen, S.: Rebound and spreading during a drop impact on wetted cylinders. Exp. Therm. Fluid Sci. 52, 97–103 (2014)

    Article  Google Scholar 

  34. Liang, G., Guo, Y., Yang, Y., Shen, S.: Liquid sheet behaviors during a drop impact on wetted cylindrical surfaces. Int. Commun. Heat Mass Transfer 54, 67–74 (2014)

    Article  Google Scholar 

  35. Liang, G., Guo, Y., Mu, X., Shen, S.: Experimental investigation of a drop impacting on wetted spheres. Exp. Therm. Fluid Sci. 55, 150–157 (2014)

    Article  Google Scholar 

  36. Asadi, S., Passandideh-Fard, M.: A computational study of droplet im**ement onto a thin liquid film. Arabian J. Sci. Eng. 34(2B), 505–517 (2009)

    Google Scholar 

  37. Ray, B., Biswas, G., Sharma, A.: Generation of secondary droplets in coalescence of a drop at a liquid-liquid interface. J. Fluid Mech. 655, 72–104 (2010)

    Article  MATH  Google Scholar 

  38. Ray, B., Biswas, G., Sharma, A., Welch, S.W.J.: CLSVOF method to study consecutive drop impact on liquid pool. Int. J. Numer. Method H. 23(1), 143–157 (2013)

  39. Sussman, M., Puckett, E.G.: A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows. J. Comput. Phys. 162(2), 301–337 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  40. Youngs, D.L.: Time-Dependent Multi-material Flow with Large Fluid Distortion. Numerical Methods for Fluid Dynamics. Academic Press, New York (1982)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gangtao Liang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, G., Shen, S. & Mu, X. Numerical analysis and insight of drop impacting dynamics upon a liquid film. Acta Mech 228, 385–400 (2017). https://doi.org/10.1007/s00707-016-1704-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-016-1704-4

Navigation