Log in

Characterization of the L genome segment of an orthohantavirus isolated from Niviventer confucianus

  • Annotated Sequence Record
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

We sequenced and analyzed the L segment of the RNA genome of Hantaan virus (HTNV) strain NC167. This segment is 6,533 nucleotides in length and contains a single open reading frame (ORF) of 6,456 nucleotides in the antigenome sense that encodes the viral RNA-dependent RNA polymerase, which is 2,153 amino acids long with a predicted molecular mass of 246 kDa. The 5′ terminus of the viral RNA was found to contain the expected sequences that are conserved in orthohantaviruses. According to the phylogenetics and levels of sequence similarity, the L segment of HTNV NC167 is similar to but clearly distinct from the L segments of other orthohantaviruses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bergsbaken T, Fink SL, Cookson BT (2009) Pyroptosis: host cell death and inflammation. Nat Rev Microbiol 7:99–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Trump BF, Berezesky IK, Chang SH, Phelps PC (1997) The pathways of cell death: oncosis, apoptosis, and necrosis. Toxicol Pathol 25:82–88

    Article  CAS  PubMed  Google Scholar 

  3. Eskola V, Xu M, Soderlund-Venermo M (2017) Severe lower respiratory tract infection caused by human bocavirus 1 in an infant. Pediatr Infect Dis J 36(11):1107–1108

    Article  PubMed  Google Scholar 

  4. Macneil A, Nichol ST, Spiropoulou CF (2011) Hantavirus pulmonary syndrome. Virus Res 162:138–147

    Article  CAS  PubMed  Google Scholar 

  5. Lamkanfi M, Dixit VM (2010) Manipulation of host cell death pathways during microbial infections. Cell Host Microbe 8:44–54

    Article  CAS  PubMed  Google Scholar 

  6. Hutchinson KL, Rollin PE, Shieh WJ, Zaki S, Greer PW, Peters CJ (2000) Transmission of Black Creek Canal virus between cotton rats. J Med Virol 60:70–76

    Article  CAS  PubMed  Google Scholar 

  7. Netski D, Thran BH, St Jeor SC (1999) Sin Nombre virus pathogenesis in Peromyscus maniculatus. J Virol 73:585–591

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Samali A, Zhivotovsky B, Jones D, Nagata S, Orrenius S (1999) Apoptosis: cell death defined by caspase activation. Cell Death Differ 6:495–496

    Article  CAS  PubMed  Google Scholar 

  9. Elliot RM (1990) Molecular biology of the Bunyaviridae in The Bunyaviridae 63-90. Plenum Press, New York

    Google Scholar 

  10. Brodsky IE, Monack D (2009) NLR-mediated control of inflammasome assembly in the host response against bacterial pathogens. Semin Immunol 21:199–207

    Article  CAS  PubMed  Google Scholar 

  11. Lee HW, Lee PW, Johnson KM (1978) Isolation of the etiologic agent of Korean hemorrhagic fever. J Infect Dis 137:298–308

    Article  CAS  PubMed  Google Scholar 

  12. Chen HX, Qiu FX, Dong BJ, Ji SZ, Li YT, Wang Y, Wang HM, Zuo GF, Tao XX, Gao SY (1986) Epidemiological studies on hemorrhagic fever with renal syndrome in China. J Infect Dis 154:394–398

    Article  CAS  PubMed  Google Scholar 

  13. Schmaljohn CS, Jennings GB, Hay J, Dalrymple JM (1986) Coding strategy of the S genome segment of Hantaan virus. Virology 155:633–643

    Article  CAS  PubMed  Google Scholar 

  14. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tamura K, Nei M, Kumar S (2004) Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci USA 2004(101):11030–11035

    Article  Google Scholar 

  16. Zuckerkandl E, Pauling L (1965) Evolutionary divergence and convergence in proteins. In: Bryson V, Vogel HJ (eds) Evolving genes and proteins. Academic Press, New York, pp 97–166

    Chapter  Google Scholar 

  17. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  PubMed  Google Scholar 

  18. Wang H, Yoshimatsu K, Ebihara H, Ogino M, Araki K, Kariwa H et al (2000) Genetic diversity of hantaviruses isolated in china and characterization of novel hantaviruses isolated from Niviventer confucianus and Rattus rattus. Virology 278:332–345

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Natural Science Foundation of Shaanxi Province, China (Grant no. 2007K11-01).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to **aoxia Dai or Dexin Li.

Ethics declarations

Conflict of interest

We declare that we have no competing interests that might have influenced the performance or presentation of the work described in this report.

Ethical approval

This study was performed in accordance with the Declaration of Helsinki and was approved by the Research Ethics Committee of **’an Jiaotong University, China.

Additional information

Handling Editor: Marc H. V. Van Regenmortel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, X., Jian, C., Li, N. et al. Characterization of the L genome segment of an orthohantavirus isolated from Niviventer confucianus. Arch Virol 164, 613–616 (2019). https://doi.org/10.1007/s00705-018-4074-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-018-4074-5

Navigation