Log in

Respiratory syncytial virus infection up-regulates TLR7 expression by inducing oxidative stress via the Nrf2/ARE pathway in A549 cells

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

In order to better understand the early pathways of the pathogenesis of, and immune response to, RSV, herein, we explored the relationship between TLR7 expression and oxidative stress induction following RSV infection in A549 cells. We studied the intervening effects of the Nrf2/ARE pathway agonist butylated hydroxyanisole (BHA) and inhibitor trigonelline (TRI) on TLR7 modulation or oxidative stress induction. For comparison purposes, we set up seven treatment groups in this study, including RSV-treated cells, BHA + RSV-treated cells, TRI + RSV-treated cells, normal cell controls, inactivated RSV controls, BHA controls and TRI controls. We measured changes in TLR7, IL-6, TNF-α mRNA using RT-PCR and IL-6, TNF-α and IL-1β protein using ELISA as well as TLR7, Nrf2 and HO-1 protein using Western blot in A549 cells from the different treatment groups. We also assessed changes in cell proliferation and measured changes in ·OH and NO in A549 cells from the different treatment groups. The results indicate that TLR7 up-regulation is related to RSV infection and the induction of oxidative stress and that TLR7 expression was mediated by the anti-inflammatory effects of Nrf2/ARE pathway inhibitors or agonists. Our experiments may help elucidate the underlying pathology of RSV infection and suggest potential therapeutic targets for drug development and the prevention of RSV-induced human diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

RSV:

Respiratory syncytial virus

TLR7:

Toll-like receptor 7

pi:

Post infection

BHA:

Butylated hydroxyanisole

TRI:

Trigonelline

Nrf2:

NF-E2-related factor 2

TLRs:

Toll-like receptors

OH:

Hydroxyl radicals

ssRNA:

Single-stranded RNA

COPD:

Chronic obstructive pulmonary disease

AOE:

Antioxidant enzyme

ROS:

Reactive oxygen species

HO-1:

Heme oxygenase-1

HEp-2:

Human laryngeal carcinoma epithelial cells

References

  1. Rima B, Collins P, Easton A et al (2017) ICTV virus taxonomy profile: Pneumoviridae. J Gen Virol 98:2912–2913. https://doi.org/10.1099/jgv.0.000959

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hall CB (2010) Respiratory syncytial virus in young children. Lancet 375:1500–1502. https://doi.org/10.1016/S0140-6736(10)60401-1

    Article  PubMed  Google Scholar 

  3. Borchers AT, Chang C, Gershwin ME et al (2013) Respiratory syncytial virus—a comprehensive review. Clin Rev Allergy Immunol 45:331–379. https://doi.org/10.1007/s12016-013-8368-9

    Article  CAS  PubMed  Google Scholar 

  4. Marshak-Rothstein A, Rifkin IR (2007) Immunologically active autoantigens: the role of toll-like receptors in the development of chronic inflammatory disease. Annu Rev Immunol 25:419–441. https://doi.org/10.1146/annurev.immunol.22.012703.104514

    Article  CAS  PubMed  Google Scholar 

  5. Lund JM, Alexopoulou L, Sato A et al (2004) Recognition of single-stranded RNA viruses by toll-like receptor 7. Proc Natl Acad Sci USA 101:5598–5603. https://doi.org/10.1073/pnas.0400937101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Schön MP, Schön M (2008) TLR7 and TLR8 as targets in cancer therapy. Oncogene 27:190–199. https://doi.org/10.1038/sj.onc.1210913

    Article  PubMed  Google Scholar 

  7. Hosakote YM, Jantzi PD, Esham DL et al (2011) Viral-mediated inhibition of antioxidant enzymes contributes to the pathogenesis of severe respiratory syncytial virus bronchiolitis. Am J Respir Crit Care Med 183:1550–1560. https://doi.org/10.1164/rccm.201010-1755OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hosakote YM, Liu T, Castro SM et al (2009) Respiratory syncytial virus induces oxidative stress by modulating antioxidant enzymes. Am J Respir Cell Mol Biol 41:348–357. https://doi.org/10.1165/rcmb.2008-0330OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhao X, Sun G, Zhang J et al (2015) Dimethyl fumarate protects brain from damage produced by intracerebral hemorrhage by mechanism involving Nrf2. Stroke 46:1923–1928. https://doi.org/10.1161/STROKEAHA.115.009398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Schallner N, Pandit R, LeBlanc R 3rd et al (2015) Microglia regulate blood clearance in subarachnoid hemorrhage by heme oxygenase-1. J Clin Invest 125:2609–2625. https://doi.org/10.1172/JCI78443

    Article  PubMed  PubMed Central  Google Scholar 

  11. Wu J, Wang Z, Guo YN et al (2010) Activation of TLR3 pathway in the pathogenesis of nephrotic syndrome induced by respiratory syncytial virus in rat model. Sichuan Da Xue Xue Bao Yi Xue Ban 41(600–603):625. https://doi.org/10.13464/j.scuxbyxb.2010.04.027 (Article in Chinese)

    Google Scholar 

  12. Koarai A, Sugiura H, Yanagisawa S et al (2010) Oxidative stress enhances toll-like receptor 3 response to double-stranded RNA in airway epithelial cells. Am J Respir Cell Mol Biol 42:651–660. https://doi.org/10.1165/rcmb.2008-0345OC

    Article  CAS  PubMed  Google Scholar 

  13. Drake MG, Scott GD, Proskocil BJ et al (2013) Toll-like receptor 7 rapidly relaxes human airways. Am J Respir Crit Care Med 188:664–672. https://doi.org/10.1164/rccm.201303-0442OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ueba O (1978) Respiratory syncytial virus. I. Concentration and purification of the infectious virus. Acta Med Okayama 32:265–272

    CAS  PubMed  Google Scholar 

  15. Kisch AL, Johnson KM (1963) A plaque assay for respiratory syncytial virus. Proc Soc Exp Biol Med 112:583–589

    Article  CAS  PubMed  Google Scholar 

  16. Olszewska-Pazdrak B, Casola A, Saito T et al (1998) Cell-specific expression of RANTES, MCP-1, and MIP-1alpha by lower airway epithelial cells and eosinophils infected with respiratory syncytial virus. J Virol 72:4756–4764

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Komaravelli N, Tian B, Ivanciuc T et al (2015) Respiratory syncytial virus infection down-regulates antioxidant enzyme expression by triggering deacetylation-proteasomal degradation of Nrf2. Free Radic Biol Med 88:391–403. https://doi.org/10.1016/j.freeradbiomed.2015.05.043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jamaluddin M, Garofalo R, Ogra PL et al (1996) Inducible translational regulation of the NF-IL6 transcription factor by respiratory syncytial virus infection in pulmonary epithelial cells. J Virol 70:1554–1563

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Patel JA, Kunimoto M, Sim TC et al (1995) Interleukin-1 alpha mediates the enhanced expression of intercellular adhesion molecule-1 in pulmonary epithelial cells infected with respiratory syncytial virus. Am J Respir Cell Mol Biol 13:602–609

    Article  CAS  PubMed  Google Scholar 

  20. Treuhaft MW, Beem MO (1982) Defective interfering particles of respiratory syncytial virus. Infect Immun 37:439–444

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Treuhaft MW (1983) A colorimetric assay for quantification of defective interfering particles of respiratory syncytial virus. J Gen Virol 64:1301–1309

    Article  PubMed  Google Scholar 

  22. Zeng H, Chen Q, Zhao B (2004) Genistein ameliorates beta-amyloid peptide (25–35)-induced hippocampal neuronal apoptosis. Free Radic Biol Med 36:180–188. https://doi.org/10.1016/j.freeradbiomed.2003.10.018

    Article  CAS  PubMed  Google Scholar 

  23. Wink DA, Wink CB, Nims RW et al (1994) Oxidizing intermediates generated in the Fenton reagent: kinetic arguments against the intermediacy of the hydroxyl radical. Environ Health Perspect 102:11–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kalaivani P, Saranya S, Poornima P et al (2014) Biological evaluation of new nickel(II) metallates: synthesis, DNA/protein binding and mitochondrial mediated apoptosis in human lung cancer cells (A549) via ROS hypergeneration and depletion of cellular antioxidant pool. Eur J Med Chem 82:584–599. https://doi.org/10.1016/j.ejmech.2014.05.075

    Article  CAS  PubMed  Google Scholar 

  25. Zhang Q, Zhao H, Wang L et al (2012) Effects of wind-dispelling drugs and deficiency-nourishing drugs of Houshiheisan compound prescription on astrocyte activation and inflammatory factor expression in the corpus striatum of cerebral ischemia rats. Neural Regen Res 7:1851–1857. https://doi.org/10.3969/j.issn.1673-5374.2012.24.002

    PubMed  PubMed Central  Google Scholar 

  26. Castro SM, Guerrero-Plata A, Suarez-Real G et al (2006) Antioxidant treatment ameliorates respiratory syncytial virus-induced disease and lung inflammation. Am J Respir Crit Care Med 174:1361–1369. https://doi.org/10.1164/rccm.200603-319OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kaul P, Biagioli MC, Singh I et al (2000) Rhinovirus-induced oxidative stress and interleukin-8 elaboration involves p47-phox but is independent of attachment to intercellular adhesion molecule-1 and viral replication. J Infect Dis 181:1885–1890. https://doi.org/10.1086/315504

    Article  CAS  PubMed  Google Scholar 

  28. Davis JM, Auten RL (2010) Maturation of the antioxidant system and the effects on preterm birth. Semin Fetal Neonatal Med 15:191–195. https://doi.org/10.1016/j.siny.2010.04.001

    Article  PubMed  Google Scholar 

  29. Sharma B, Altman JK, Goussetis DJ et al (2011) Protein kinase R as mediator of the effects of interferon (IFN) gamma and tumor necrosis factor (TNF) alpha on normal and dysplastic hematopoiesis. J Biol Chem 286:27506–27514. https://doi.org/10.1074/jbc.M111.238501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Marzec JM, Christie JD, Reddy SP et al (2007) Functional polymorphisms in the transcription factor NRF2 in humans increase the risk of acute lung injury. FASEB J 21:2237–2246. https://doi.org/10.1096/fj.06-7759com

    Article  CAS  PubMed  Google Scholar 

  31. Espinoza JA, León MA, Céspedes PF et al (2017) Heme oxygenase-1 modulates human respiratory syncytial virus replication and lung pathogenesis during infection. J Immunol 199:212–223. https://doi.org/10.4049/jimmunol.1601414

    Article  CAS  PubMed  Google Scholar 

  32. Komaravelli N, Ansar M, Garofalo RP et al (2017) Respiratory syncytial virus induces NRF2 degradation through a promyelocytic leukemia protein-ring finger protein 4 dependent pathway. Free Radic Biol Med 113:494–504. https://doi.org/10.1016/j.freeradbiomed.2017.10.380

    Article  CAS  PubMed  Google Scholar 

  33. Schaedler S, Krause J, Himmelsbach K et al (2010) Hepatitis B virus induces expression of antioxidant response element-regulated genes by activation of Nrf2. J Biol Chem 285:41074–41086. https://doi.org/10.1074/jbc.M110.145862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Burdette D, Olivarez M, Waris G (2010) Activation of transcription factor Nrf2 by hepatitis C virus induces the cell-survival pathway. J Gen Virol 91:681–690. https://doi.org/10.1099/vir.0.014340-0

    Article  CAS  PubMed  Google Scholar 

  35. Ivanov AV, Smirnova OA, Ivanova ON et al (2011) Hepatitis C virus proteins activate NRF2/ARE pathway by distinct ROS-dependent and independent mechanisms in HUH7 cells. PLoS One 6:e24957. https://doi.org/10.1371/journal.pone.0024957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lee J, Koh K, Kim YE et al (2013) Upregulation of Nrf2 expression by human cytomegalovirus infection protects host cells from oxidative stress. J Gen Virol 94:1658–1668. https://doi.org/10.1099/vir.0.052142-0

    Article  CAS  PubMed  Google Scholar 

  37. Gjyshi O, Bottero V, Veettil MV et al (2014) Kaposi’s sarcoma-associated herpesvirus induces Nrf2 during de novo infection of endothelial cells to create a microenvironment conducive to infection. PLoS Pathog 10:e1004460. https://doi.org/10.1371/journal.ppat.1004460

    Article  PubMed  PubMed Central  Google Scholar 

  38. Page A, Volchkova VA, Reid SP et al (2014) Marburgvirus hijacks nrf2-dependent pathway by targeting nrf2-negative regulator keap1. Cell Rep 6:1026–1036. https://doi.org/10.1016/j.celrep.2014.02.027

    Article  CAS  PubMed  Google Scholar 

  39. Cho HY, Imani F, Miller-DeGraff L et al (2009) Antiviral activity of Nrf2 in a murine model of respiratory syncytial virus disease. Am J Respir Crit Care Med 179:138–150. https://doi.org/10.1164/rccm.200804-535OC

    Article  CAS  PubMed  Google Scholar 

  40. Liu X, Ye F, **ong H et al (2015) IL-1β induces IL-6 production in retinal Müller cells predominantly through the activation of p38 MAPK/NF-κB signaling pathway. Exp Cell Res 331:223–231. https://doi.org/10.1016/j.yexcr.2014.08.040

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Ms. **ao-yan Zhang for her technical assistance and LetPub (www.letpub.com) for its linguistic assistance during the preparation of this manuscript.

Funding

This work was funded by the research programs from the National Natural Science Foundation of China (Grant No. 81371797), the program from the Natural Science Foundation of Anhui Province (Grant No. 1308085MH129) and the key project of Natural Science Research of Anhui Education Department (Grant No. KJ2012A152).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng-hai Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Handling Editor: Bert K. Rima.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 41 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, T., Yu, Hy., Zhang, Cl. et al. Respiratory syncytial virus infection up-regulates TLR7 expression by inducing oxidative stress via the Nrf2/ARE pathway in A549 cells. Arch Virol 163, 1209–1217 (2018). https://doi.org/10.1007/s00705-018-3739-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-018-3739-4

Navigation