Log in

The performance of regional climate models driven by various general circulation models in reproducing observed rainfall over East Africa

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

Regional climate models (RCM) are commonly used to downscale the coarse resolution general circulation models (GCMs) to produce climate variables at spatially high-resolution grids. The quality of the downscaled data depends on the skills of both GCMs and RCMs. In this study, 10 GCMs are used to constrain the boundary and provide initial conditions of three RCMs. A total of 18 GCM-RCMs combinations are employed to produce simulations over East Africa (EA). The accuracy of simulated rainfalls is evaluated with respect to Climate Research Unit (CRU) rainfall to identify the best GCM-RCM combinations. Bias, root mean squared error (RMSE), correlation coefficient, and MAE-based model skill score have shown that MPI-REMO, MIROC-REMO, MPI-RCA4, IPSL-RCA4, CCCMA-RCA4, MOHC-CCLM, MOHC-REMO, and CNRM-RCA4 during spring season; ICHEC-REMO, MIROC-REMO, MOHC-REMO, MIROC-RCA4, CSIRO-RCA4, and MPI-REMO during autumn season; CSIRO-RCA4, MIROC-RCA4, CCCMA-RCA4, MIROC-REMO, CNRM-RCA4, and MOHC-RECA during boreal summer; and ICHEC-REMO, NOAA-RCA4, MOHC-REMO, MOHC-CCLM, MIROC-REMO, MPI-REMO, and IPSL-RCA4 during boreal winter season are the best performing GCM-RCM combination. It is also evident that the skills of the models are better in autumn than their skills in boreal spring and summer. Moreover, summer rain in EA is the most difficult for models to simulate. Comparison of annual mean with the CRU rainfall shows that MPI-REMO, MIROC-REMO, CSIRO-RCA4, MOHC-REMO, CCCma-RCA4, IPSL-RCA4, and CNRM-RCA4 are also the best GCM-RCM combinations as observed from strong significant spatial correlation, as well as low bias, RMSE, and positive skill score as high as 0.7. Therefore, the GCM-RCM combinations that exhibit superior performance over EA in most seasons as well as in capturing observed annual mean are CCCMA-RCA4, MIROC-REMO, MPI-REMO, IPSL-RCA4, CSIRO-RCA4, MOHC-REMO, and MIROC-RCA4. The difference in skills between models as well as variation of the same model skill both spatially and seasonally implies the role of several factors such as local topography, vegetation, and surface type as well as robustness of model physics in capturing small scale processes such as mesoscale convection in boreal summer (e.g., over Ethiopian highlands).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ahmed SM (2020) Impacts of drought, food security policy and climate change on performance of irrigation schemes in sub-saharan africa: The case of sudan. Agric Water Manag 232:106,064. https://doi.org/10.1016/j.agwat.2020.106064, http://www.sciencedirect.com/science/article/pii/S0378377419317664

  • Allan RP, Soden BJ (2008) Atmospheric warming and the amplification of precipitation extremes. Sci (NY) 321(5895):1481–1484

    Google Scholar 

  • Anyah RO, Semazzi FHM, **e L (2006) Simulated Physical Mechanisms Associated with Climate Variability over Lake Victoria Basin in East Africa. Mon Weather Rev 134(12):3588–3609

    Google Scholar 

  • Anyah R, Semazzi F (2007) Variability of East African rainfall based on multiyear RegCM3 simulations. Int J Climatol 27(3):357–371

    Google Scholar 

  • Arora V, Scinocca J, Boer G, Christian J, Denman K, Flato G, Kharin V, Lee W, Merryfield W (2011) Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases. Geophys Res Lett - GEOPHYS RES LETT 38:–. https://doi.org/10.1029/2010GL046270

  • Ayugi B, Tan G, Gnitou G, Ojara M, Ongoma V (2019) Historical evaluations and simulations of precipitation over East Africa from Rossby centre regional climate model. Atmos Res 232:1–17

    Google Scholar 

  • Bahaga TK, Kucharski F, Mengistu Tsidu G, Yang H (2015) Assessment of prediction and predictability of short rains over equatorial east africa using a multi-model ensemble. Theor Appl Climatol:637–649

  • Christensen J, Machenhauer B, Jones R, Schär C, Ruti P, Castro M, Visconti G (1997) Validation of present-day regional climate simulations over Europe: LAM simulations with observed boundary conditions. Clim Dyn 13:489–506

    Google Scholar 

  • Church J, Clark P, Cazenave A, Gregory J, Jevrejeva S, Levermann A, Merrifield M, Milne G, Nerem R, Nunn P, Payne A, Pfeffer W, Stammer D, Alakkat U (2013) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Sea Level Change:1138–1191

  • Collins W, Bellouin N, Doutriaux-Boucher M, Gedney N, Halloran P, Hinton T, Hughes J, Jones C, Joshi M, Liddicoat S, Martin G, O’Connor F, Rae J, Senior C, Sitch S, Totterdell I, Wiltshire A, Woodward S (2011) Development and evaluation of an Earth System model, HADGEM2. Geosci Model Dev 4:1051–1075. https://doi.org/10.5194/gmd-4-1051-2011

    Google Scholar 

  • Cuxart J, Bougeault P, Redelsperger JL (2000) A turbulence scheme allowing for mesoscale and large - eddy simulations 126:1–30

  • Denis B, Laprise R, Caya D, Côté J (2002) Downscaling ability of one-way nested regional climate models: The Big-Brother Experiment. Clim Dyn 18:627–646

    Google Scholar 

  • Dibaba W, Miegel K, Demissie T (2019) Evaluation of the cordex regional climate models performance in simulating climate conditions of two catchments in upper blue nile basin. Dyn Atmosph Oceans 87:101,104. https://doi.org/10.1016/j.dynatmoce.2019.101104

    Google Scholar 

  • Didier N, Ogwang B, Ongoma V (2016) The Impacts of Topography on Spatial and Temporal Rainfall Distribution over Rwanda Based on WRF Model. Atmosph Clim Sci 6(–):145–157

    Google Scholar 

  • Diro G, Tompkins MA, Bi X (2012) Dynamical downscaling of ECMWF Ensemble seasonal forecasts over East Africa with RegCM3. J Geophys Res (Atmosph) 117(D16103):–

  • Doms G, Förstner J, Heise E, Herzog H, Raschendorfer M, Schrodin R, Reinhardt T, Vogel G (2007) A description of the nonhydrostatic regional model LM (version 3.20), Part II: Physical parameterization COSMO Consortium

  • Donner LJ, Wyman BL, Hemler RS, Horowitz LW, Ming Y, Zhao M, Golaz JC, Ginoux P, Lin SJ, Schwarzkopf MD, Austin J, Alaka G, Cooke WF, Delworth TL, Freidenreich SM, Gordon CT, Griffies SM, Held IM, Hurlin WJ, Klein SA, Knutson TR, Langenhorst AR, Lee HC, Lin Y, Magi BI, Malyshev SL, Milly PCD, Naik V, Nath MJ, Pincus R, Ploshay JJ, Ramaswamy V, Seman CJ, Shevliakova E, Sirutis JJ, Stern WF, Stouffer RJ, Wilson RJ, Winton M, Wittenberg AT, Zeng F (2011) The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL global coupled model CM3. J Clim 24(13):3484–3519. https://doi.org/10.1175/2011JCLI3955.1

    Google Scholar 

  • Dufresne J-L, Foujols M-A, Denvil S, Caubel A, Marti O, Olivier A, Balkanski Y, Bekki S, Bellenger H, Benshila R, Bony S, Bopp L, Braconnot P, Brockmann P, Cadule P, Cheruy F, Codron F, Cozic A, Cugnet D, De Noblet N, Duvel J-P, Ethe, Fairhead L, Fichefet T, Flavoni S, Friedlingstein P, Grandpeix J-Y, Guez L, Guilyardi E, Hauglustaine D, Hourdin F, Idelkadi A, Ghattas J, Joussaume S, Kageyama M, Krinner G, Labetoulle S, Lahellec A, Lefebvre M, Lefevre F, Levy C, Zhanbin L, Lloyd J, Lott F, Madec G, Mancip M, Marchand M, Masson S, Meurdesoif Y, Mignot J, Musat I, Parouty S, Polcher J, Rio C, Schulz M, Swingedouw D, Szopa S, Claude T, Terray P, Viovy N, Vuichard N (2013) Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5. Clim Dyn 40(9):2123–2165. https://doi.org/10.1007/s00382-012-1636-1

    Google Scholar 

  • Dunne JP, John JG (2012) GFDL’S ESM2 Global Coupled Climate-Carbon Earth System Models. Part I: Physical Formulation and Baseline Simulation Characteristics. J Clim 25(19):6646–6665. https://doi.org/10.1175/JCLI-D-11-00560.1

    Google Scholar 

  • Elizalde A, Haensler A, Hagemann S, Jacob D, Kumar P, Podzun R, Rechid D, Remedio AR, Saeed F, Sieck K, Teichmann C, Wilhelm C (2010) Evaluation of the regional climate model REMO over several CORDEX domains throughout the globe. AGU Fall Meeting Abstracts, pp 181–199

  • Endris HS, Omondi P, Jain S, Lennard C, Hewitson B, Chang’a L, Awange JL, Dosio A, Ketiem P, Nikulin G, Panitz HJ, Büchner M, Stordal F, Tazalika L (2013) Assessment of the Performance of CORDEX Regional Climate Models in Simulating East African Rainfall. J Clim 26 (21):8453–8475

    Google Scholar 

  • Evans J (2011) CORDEX - An international climate downscaling initiative, pp 2705–2711

  • Funk C, Dettinger M, Michaelsen J, Verdin J, Brown M, Barlow M, Hoell A (2008) Warming of the indian ocean threatens eastern and southern africa food security but could be mitigated by agricultural development. Proc Natl Acad Sci USA 105(32):11,081–11,086

  • Gbobaniyi E, Sarr A, Sylla M, Diallo I, Lennard C, Dosio A, Dhiédiou A, Kamga A, Klutse NAB, Hewitson B, Nikulin G, Lamptey B (2014) Climatology, annual cycle and interannual variability of precipitation and temperature in CORDEX simulations over West Africa. Int J Climatol 34:2241–2257

    Google Scholar 

  • Giorgetta M, Jungclaus J, Reick C, Legutke S, Bader J, Böttinger M, Brovkin V, Crueger T, Esch M, Fieg K, Gorges K, Gayler V, Haak H, Hollweg HD, Ilyina T, Kinne S, Kornblueh L, Matei D, Mauritsen T, Stevens B (2013) Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project Phase 5. J Adv Model Earth Syst 5:572–597. https://doi.org/10.1002/jame.20038

    Google Scholar 

  • Gutowski WJ, Giorgi F, Timbal B, Frigon A, Jacob D, Kang HS, Raghavan K, Lee B, Lennard C, Nikulin G et al (2016) WCRP coordinated regional downscaling experiment (CORDEX): a diagnostic MIP for CMIP6, pp 4087–4095

  • Hagemann S (2002) An improved land surface parameter dataset for global and regional climate models. Technical Report, pp 336. https://doi.org/10.17617/2.2344576

  • Haile A, Rientjes T (2015) Evaluation of regional climate model simulations of rainfall over the upper blue nile basin. Atmosph Res 161-162:57–64. https://doi.org/10.1016/j.atmosres.2015.03.013

    Google Scholar 

  • Hannah L (2015) Chapter 2 - the climate system and climate change. In: Hannah L (ed) Climate Change Biology. 2nd edn. https://doi.org/10.1016/B978-0-12-420218-4.00002-0, http://www.sciencedirect.com/science/article/pii/B9780124202184000020. Academic Press, Boston, pp 13–53

  • Harris P, Jones IC (2017) Climate research Unit (CRU) Time Series (TS) Version 4.01 of high resolution gridded data of month by month variation in climate (Jan. 1901 - Dec. 2016). Center for Environmental Data Analysis –:–

  • Indeje M, HM Semazzi F, Ogalo L (2000) ENSO Signals in East African rainfall seasons. Int J Climatol 20(1):19–46

    Google Scholar 

  • Jacob D, Elizalde A, Haensler A, Hagemann S, Kumar P, Podzun R, Rechid D, Remedio AR, Saeed F, Sieck K et al (2012) Assessing the transferability of the regional climate model REMO to different coordinated regional climate downscaling experiment (CORDEX) regions. Atmosphere 3(1):181–199

    Google Scholar 

  • Jeffrey S, Rotstayn L, Collier M, Dravitzki S, Hamalainen C, Moeseneder C, Wong K, Syktus J (2013) Australia’s CMIP5 submission using the CSIRO-Mk3.6 model, pp 1–13

  • Jones C, Samuelsson P, Kjellström E (2011) Regional climate modelling at the Rossby Centre. Tellus Ser A-dyn Meteorol Oceanograp - TELLUS A-DYN METEOROL OCEANOG 63:1–3

    Google Scholar 

  • Kain J (2004) The Kain - Fritsch convective parameterization: An update. J Appl Meteorol 43:170–181. https://doi.org/10.1175/1520-0450(2004)04360;0170:tkcpau62;2.0.co;2

  • Kharin V, Zwiers F, Zhang X, Hegerl G (2007) Changes in temperature and precipitation extremes in the IPCC ensemble of global coupled model simulations. J Clim 20:1419–1444

    Google Scholar 

  • Kisembe J, Favre A, Dosio A, Lennard C, Sabiiti G, Nimusiima A (2019) Evaluation of rainfall simulations over Uganda in cordex regional climate models. Theor Appl Climatol 137:1117–1134. https://doi.org/10.1007/s00704-018-2643-x

    Google Scholar 

  • Knutti R, Sedlacek J (2012) Robustness and Uncertainties in the New CMIP5 Climate Model Projections. Submitted Nat Clim Chang 3:1–5

    Google Scholar 

  • Kristj’ansson J, Rasch P (1997) A Comparison of the CCM3 Model Climate Using Diagnosed and Predicted Condensate Parameterizations. J Clim 11:1–32. https://doi.org/10.1175/1520-0442(1998)011<1587:ACOTCM>2.0.CO;2

  • Liebmann B, Hoerling MP, Funk C, Bladé I, Dole RM, Allured D, Quan X, Pegion P, Eischeid JK (2014) Understanding Recent Eastern Horn of Africa Rainfall Variability and Change. Journal of Climate

  • Lohmann REU (1996) Design and performance of a new cloud microphysics scheme developed for the ECHAM general circulation model. Clim Dyn 12:557–572. https://doi.org/10.1007/BF00207939

    Google Scholar 

  • Louis JF (1979) A parametric model of vertical eddy fluxes in the atmosphere. Bound Layer Metreol 17(2):187–202

    Google Scholar 

  • Lyon B, DeWitt (2012) A recent and abrupt decline in the East Africa long rains. Geophys Res Lett 39(L02702):–

  • Mengistu Tsidu G (2012) High-resolution monthly rainfall database for ethiopia: homogenization, reconstruction, and gridding. J Clim 25:8422–8443. https://doi.org/10.1175/JCLI-D-12-00027.1

    Google Scholar 

  • Mitchell T, Jones P (2005) An Improved Method of Constructing a Database of Monthly Climate Observations and Associated High-Resolution Grids. Int J Climatol Int J Climatol 25(—):693–712

    Google Scholar 

  • Mostafa AN, Wheida A, El Nazer M, Adel M, Leithy LE, Siour G, Coman A, Borbon A, Wahab Magdy A, Omar M, Saad-Hussein A, Alfaro SC (2019) Past (1950–2017) and future (–2100) temperature and precipitation trends in Egypt. Weather and Climate Extremes. https://doi.org/10.1016/j.wace.2019.100225, https://hal.uca.fr/hal-02311560

  • Nguvava M, Abiodun B, Otieno F (2019) Projecting drought characteristics over east african basins at specific global warming levels. Atmos Res 228. https://doi.org/10.1016/j.atmosres.2019.05.008

  • Nicholson S (2014) A detailed look at the recent drought situation in the Greater Horn of Africa. J Arid Environ 103:71–79

    Google Scholar 

  • Nicholson S (2017) Climate and climatic variability of rainfall over eastern africa: Climate over eastern africa. Rev Geophys 55(10):590–635

    Google Scholar 

  • Minchao NG, Kjellström E, Belušić D, Jones C, Lindstedt D (2019) The impact of RCM formulation and resolution on simulated precipitation in Africa. https://doi.org/10.5194/esd-2019-55

  • Nikulin G, Jones C, Giorgi F, Asrar G, Büchner M, Cerezo-Mota R, Christensen OB, Déqué M, Fernandez J, Hänsler A, van Meijgaard E, Samuelsson P, Sylla M B, Sushama L (2012) Precipitation climatology in an ensemble of cordex-africa regional climate simulations. J Clim 25(18):6057–6078. https://doi.org/10.1175/JCLI-D-11-00375.1

    Google Scholar 

  • Nikulin G, Asharaf S, Magariño M, Calmanti S, Cardoso R, Bhend J, Fernández J, Frías M, Fröhlich K, Früh B, Herrera García S, Manzanas R, Gutiérrez J, Hansson U, Kolax M, Liniger M, Soares P, Spirig C, Tomé R, Wyser K (2017) Dynamical and statistical downscaling of a global seasonal hindcast in eastern africa. Climate Services 9. https://doi.org/10.1016/j.cliser.2017.11.003

  • Ogwang B, Chen H, Li X, Gao C (2016) Evaluation of the capability of regcm4 in simulating east african climate. Theor Appl Climatol 124:303–313. https://doi.org/10.1007/s00704-015-1420-3

    Google Scholar 

  • Omondi P, Awange J, Forootan E, Ogalo L, Barakiza R, Bogale G, Fesseha I, Kululetera V, Kilembe C, Mugunga Mbati M, Kilavi M, King’uyu S, Omeny P, Njogu A, Mamoun Badr E, Adam Musa T, Muchiri P, Bamanya D, Komutunga E (2014) Changes in Temperature and Precipitation extremes over the Greater Horn of Africa Region from 1961 to 2010. Int J Climatol 34(4):1262–1277

    Google Scholar 

  • Ongoma V, Chen H (2017) Temporal and spatial variability of temperature and precipitation over east africa from 1951 to 2010. Meteorog Atmos Phys 129:131–144. https://doi.org/10.1007/s00703-016-0462-0

    Google Scholar 

  • Ongoma V, Chen H, Gao C (2019) Evaluation of CMIP5 20th century rainfall simulation over the Equatorial East Africa. Theor Appl Climatol 135:893–910

    Google Scholar 

  • Owiti Z, Zhu W (2012) Spatial distribution of rainfall seasonality over East Africa. Journal of Geography and Regional Planning

  • Ritter B, Geleyn JF (1992) A Comprehensive Radiation Scheme for Numerical Weather Prediction Models with Potential Applications in Climate Simulations. Mon Weather Rev 120(2):303–325. https://doi.org/10.1175/1520-0493(1992)120<0303:ACRSFN>2.0.CO;2

  • Rummukainen M (2010) State - of - the - art with regional climate model. Wiley Interdiscip Rev Clim Chang 1:82–96

    Google Scholar 

  • Samuelsson P, Gollvik S, Ullerstig A (2006) The land - surface scheme of the Rossby Centre regional atmospheric climate model (RCA3). SMHI

  • Samuelsson C, Jones P, Willén U, ULLERSTIG A, GOLLVIK S, Hansson U, JANSSON C, Kjellström E, Nikulin G, WYSER K (2011) The rossby centre regional climate model rca3: Model description and performance. Tellus A 63:4–23. https://doi.org/10.1111/j.1600-0870.2010.00478.x

    Google Scholar 

  • Schneider U, Becker A, Peter FA, Meyer-Christoffer RB, Ziese M (2015) Global Precipitation Climatology Centre (GPCC, http://gpcc.dwd.de/) at Deutscher Wetterdienst

  • Segele Z, Leslie L, Lamb P (2009) Evaluation and adaptation of a regional climate model for the Horn of Africa: Rainfall climatology and interannual variability. Int J Climatol 29:47–65

    Google Scholar 

  • Senior C, Andrews T, Burton C, Chadwick R, Copsey D, Graham T, Hyder P, Jackson L, McDonald R, Ridley J, Ringer M, Tsushima Y (2016) Idealised climate change simulations with a high resolution physical model: HadGEM3-GC2. J Adv Model Earth Syst 8:813–830

    Google Scholar 

  • Shongwe ME, van Oldenborgh GJ, van den Hurk BJJM, de Boer B, Coelho CAS, van Aalst MK (2009) Projected Changes in Mean and Extreme Precipitation in Africa under Global Warming. part i: Southern africa. J Clim 22(13):3819–3837

    Google Scholar 

  • Solomon S, Qin D, Manning M, Chen Z, Marquis M, Avery K, MTignor Miller H (2007) Climate change 2007: The physical science basis. Working Group I Contribution to the Fourth Assessment Report of the IPCC, vol 1, pp 1–56

  • Syktus J, Jeffrey S, Rotstayn L, Wong K, Toombs N, Dravitzki S, Collier M, Hamalainen C, Moeseneder C (2011) The CSIRO-QCCCE contribution to CMIP5 using the CSIRO-Mk3.6 climate model, pp 2782–2788

  • Taylor E (2001) Summarizing multiple aspects of model performances in a single diagram. J Geophys Res 106:7183–7192

    Google Scholar 

  • Taylor K, Ronald S, Meehl G (2011) An overview of CMIP5 and the Experiment Design. Bull Am Meteorol Soc 93:485–498

    Google Scholar 

  • Tiedtke M (1989) A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon Weather Rev 117(8):1779–1800

    Google Scholar 

  • Voldoire A, Sanchez Gomez E, Melia DSY, Decharme B, Cassou C, Senesi S, Valcke S, Beau I, Alias A, Chevallier M, Deque M, Deshayes J, Douville H, Fernandez E, Madec G, Maisonnave E, Moine MP, Planton S, Saint Martin D, Szopa S, Tyteca S, Alkama R, Belamari S, Braun A, Coquart L, Chauvin F (2013) The CNRM-CM5.1 global climate model : description and basic evaluation. Clim Dyn 40:2091–2121. https://doi.org/10.1007/s00382-011-1259-y, http://www.documentation.ird.fr/hor/fdi:010060868

  • Watanabe M, Suzuki T, O’ishi R, Komuro Y, Watanabe S, Emori S, Takemura T, Chikira M, Ogura T, Sekiguchi M, Takata K, Yamazaki D, Yokohata T, Nozawa T, Hasumi H, Tatebe H, Kimoto M (2010) Improved climate simulation by MIROC5: Mean states, variability, and climate sensitivity. J Clim 23:6312–6335

    Google Scholar 

  • Williams A, Funk C (2011) A westward extension of the warm pool leads to a westward extension of the Walker circulation, drying Eastern Africa. Clim Dyn 37(—):2417–2435

    Google Scholar 

  • Woldemeskel F, Sharma A, Sivakumar B, Mehrotra R (2016) Quantification of precipitation and temperature uncertainties simulated by CMIP3 and CMIP5 models. J Geophys Res Atmosph 121:3–17

    Google Scholar 

  • Worku G, Teferi E, Bantider A, Dile YT, Taye MT (2018) Evaluation of regional climate models performance in simulating rainfall climatology of jemma sub-basin, upper blue nile basin, ethiopia. Dyn Atmosph Oceans 83:53–63

    Google Scholar 

  • Yang W, Seager R, Cane MA, Lyon B (2014) The East African Long Rains in Observations and Models. J Clim 27(19):7185–7202

    Google Scholar 

  • Yang W, Seager R, Cane M, Lyon B (2015) The Annual Cycle of East African Precipitation. J Clim 28:2385–2404

    Google Scholar 

  • Zentek R, Heinemann G (2019) Verification of the regional atmospheric model CCLM v5.0 with conventional data and Lidar measurements in Antarctica. Geoscientific Model Development Discussions, pp 1–38

Download references

Acknowledgements

The authors would like to acknowledge greatly World climate research programme (WCRP) for access to precipitation data. The first author also would like to extend gratitude to Wollo University for sponsorship and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abera Debebe Assamnew.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Assamnew, A.D., Tsidu, G.M. The performance of regional climate models driven by various general circulation models in reproducing observed rainfall over East Africa. Theor Appl Climatol 142, 1169–1189 (2020). https://doi.org/10.1007/s00704-020-03357-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-020-03357-3

Keywords

Navigation