Log in

Turbulent transfer coefficient and roughness length in a high-altitude lake, Tibetan Plateau

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

A persistent unstable atmospheric boundary layer was observed over Lake Ngoring, caused by higher temperature on the water surface compared with the overlying air. Against this background, the eddy covariance flux data collected from Lake Ngoring were used to analyse the variation of transfer coefficients and roughness lengths for momentum, heat and moisture. Results are discussed and compared with parameterization schemes in a lake model. The drag coefficient and momentum roughness length rapidly decreased with increasing wind velocity, reached a minimum value in the moderate wind velocity and then increased slowly as wind velocity increased further. Under weak wind conditions, the surface tension or small scale capillary wave becomes more important and increases the surface roughness. The scalar roughness length ratio was much larger than unity under weak wind conditions, and it decreased to values near unity as wind velocity exceeded 4.0 m s−1. The lake model could not reproduce well the variation of drag coefficient, or momentum roughness length, versus wind velocity in Lake Ngoring, but it did simulate well the sensible heat and latent heat fluxes, as a result of complementary opposite errors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Andreas EL, Emanuel KA (2001) Effects of sea spray on tropical cyclone intensity. J Atmos Sci 58(24):3741–3751

    Article  Google Scholar 

  • Andreas EL, Jordan RE, Makshtas AP (2005) Parameterizing turbulent exchange over sea ice: the ice station Weddell results. Bound Layer Meteorol 114(2):439–460

    Article  Google Scholar 

  • Andreas EL, Horst TW, Grachev AA, Persson POG, Fairall CW, Guest PS, Jordan RE (2010a) Parametrizing turbulent exchange over summer sea ice and the marginal ice zone. Q J Roy Meteorol Soc 136(649):927–943

    Article  Google Scholar 

  • Andreas EL, Persson POG, Grachev AA, Jordan RE, Horst TW, Guest PS, Fairall CW (2010b) Parameterizing turbulent exchange over sea ice in winter. J Hydrometeorol 11(1):87–104

    Article  Google Scholar 

  • Ataktürk SS, Katsaros KB (1999) Wind stress and surface waves observed on Lake Washington. J Phys Oceanogr 29(4):633–650

    Article  Google Scholar 

  • Biermann T, Babel W, Ma W, Chen X, Thiem E, Ma Y, Foken T (2014) Turbulent flux observations and modelling over a shallow lake and a wet grassland in the Nam Co basin, Tibetan Plateau. Theor Appl Climatol 116(1–2):301–316

    Article  Google Scholar 

  • Bonan G (2002) Ecological Climatology: Concepts and Applications, First ed. Cambridge University Press, Cambridge p 216

  • Bourassa MA, Vincent DG, Wood WL (1999) A flux parameterization including the effects of capillary waves and sea state. J Atmos Sci 56(9):1123–1139

    Article  Google Scholar 

  • Bradley E, Coppin P, Godfrey J (1991) Measurements of sensible and latent heat flux in the western equatorial Pacific ocean. J Geophys Res 96:3375–3389

    Article  Google Scholar 

  • Businger JA (1973) Turbulent transfer in the atmospheric surface layer. In workshop on micrometeorology. American Meteorological Society, Boston

    Google Scholar 

  • Businger JA, Wyngaard JC, Izumi Y, Bradley EF (1971) Flux-profile relationships in the atmospheric surface layer. J Atmos Sci 28(2):181–189

    Article  Google Scholar 

  • Charnock H (1955) Wind stress on a water surface. Q J Roy Meteorol Soc 81:639–640

    Article  Google Scholar 

  • Croley TE II (1989) Verifiable evaporation modeling on the Laurentian Great Lakes. Water Resour Res 25(5):781–792

    Article  Google Scholar 

  • Davies J (1972) Surface albedo and emissivity for Lake Ontario. Clin Bull 12:12–22

    Google Scholar 

  • Derecki J (1981) Stability effects on Great Lakes evaporation. J Great Lakes Res 7(4):357–362

    Article  Google Scholar 

  • Donelan M (1990) Air–sea interaction. In: LeMehaute B, Hanes D (eds) Ocean engineering science. Wiley, New York, pp 239–292

    Google Scholar 

  • Donelan MA, Dobson FW, Smith SD, Anderson RJ (1993) On the dependence of sea surface roughness on wave development. J Phys Oceanogr 23:2143–2149

    Article  Google Scholar 

  • Dyer AJ (1974) A review of flux-profile relationships. Bound-Lay Meteorol 7(3):363–372

    Article  Google Scholar 

  • Foken T (2006) 50 years of the Monin-Obukhov similarity theory. Bound Layer Meteorol 119:431–447

    Article  Google Scholar 

  • Garratt J (1992) The atmospheric boundary layer. Cambridge University Press, Cambridge

    Google Scholar 

  • Geernaert GL, Larsen SE, Hansen F (1987) Measurements of the wind stress, heat flux and turbulence intensity during storm conditions over the North Sea. J Geophys Res 92:127–139

    Article  Google Scholar 

  • Gerken T, Biermann T, Babel W, Herzog M, Ma Y, Foken T, Graf H-F (2014) A modelling investigation into lake-breeze development and convection triggering in the Nam Co Lake basin, Tibetan Plateau. Theor Appl Climatol 117(1–2):149–167

    Article  Google Scholar 

  • Godfrey JS, Beljaars ACM (1991) On the turbulent fluxes of buoyancy, heat and moisture at the air-sea interface at low wind speeds. J Geophys Res 96:22043–22048

    Article  Google Scholar 

  • Grachev AA, Bariteau L, Fairall CW, Hare JE, Helmig D, Hueber J, Lang EK (2011) Turbulent fluxes and transfer of trace gases from ship-based measurements during TexAQS 2006. J Geophys Res 116:D13110

    Article  Google Scholar 

  • Haginoya S, Fujii H, Kuwagata T, Xu J, Ishigooka Y, Kang S, Zhang Y (2009) Air-lake interaction features found in heat and water exchanges over Nam Co on the Tibetan Plateau. SOLA 5:172–175

    Article  Google Scholar 

  • Hanabusa T, Fujita T, Uozu H (1976) The measurement of turbulent fluxes at Miyako Island (AMTEX’75). In Preprint of annual meeting of Jap. Meteorol Soc 35

  • Heikinheimo M, Kangas M, Tourula T, Venäläinen A, Tattari S (1999) Momentum and heat fluxes over lakes Tämnaren and Råksjö determined by the bulk-aerodynamic and eddy-correlation methods. Agr Forest Meteorol 98:521–534

    Article  Google Scholar 

  • Hicks BB (1972) Some evaluations of drag and bulk transfer coefficients over water bodies of different sizes. Bound Layer Meteorol 3(2):201–213

    Article  Google Scholar 

  • Högström U (1988) Non-dimensional wind and temperature profiles in the atmospheric surface layer: a re-evaluation. Bound Layer Meteorol 42:55–78

    Article  Google Scholar 

  • Huang CH (2010) Sea surface roughness and drag coefficient under free convection conditions. In: Mastorakis NE, Mladenov V, Bojkovic Z (eds) Latest trends on theoretical and applied mechanics, fluid mechanics and heat & mass transfer. WSEAS Press, Corfu Island, pp 121–128

    Google Scholar 

  • Immerzeel WW, Van Beek LP, Bierkens MF (2010) Climate change will affect the Asian water towers. Science 328:1382–1385

    Article  Google Scholar 

  • Konishi T, Nan-niti T (1979) Observed relationship between the drag coefficient, Cd, and stability parameter, (−z/L). J Oceanogr Soc Japan 35(5):209–214

    Article  Google Scholar 

  • Le Roux JP (2009) Characteristics of develo** waves as a function of atmospheric conditions, water properties, fetch and duration. Coast Eng 56(4):479–483

    Article  Google Scholar 

  • Liu W, Katsaros K, Businger J (1979) Bulk parameterization of the air–sea exchange of heat and water vapor including the molecular constraints at the interface. J Atmos Sci 36:1722–1735

    Article  Google Scholar 

  • Ma Y et al (2009) Recent advances on the study of atmosphere-land interaction observations on the Tibetan Plateau. Hydrol Earth Syst Sci 13(7):1103–1111

    Article  Google Scholar 

  • Mahrt L, Vickers D, Sun J, Jensen NO, Jørgensen H, Pardyjak E, Fernando H (2000) Determination of the surface drag coefficient. Bound Lay Meteorol 99(2):249–276

    Article  Google Scholar 

  • Mahrt L, Vickers D, Frederickson P, Davidson K, Smedman AS (2003) Sea-surface aerodynamic roughness. J Geophys Res 108(C6):3171

    Article  Google Scholar 

  • Rouse WR, Oswald CM, Binyamin J, Blanken PD, Schertzer WM, Spence C (2003) Interannual and seasonal variability of the surface energy balance and temperature of central Great Slave Lake. J Hydrometeorol 4(4):720–730

    Article  Google Scholar 

  • Saunders P (1967) The temperature at the ocean-air interface. J Atmos Sci 24:269–273

    Article  Google Scholar 

  • Sethuraman S, Raynor GS (1975) Surface drag coefficient dependence on the aerodynamic roughness of the sea. J Geophys Res 80(36):4983–4988

    Article  Google Scholar 

  • Smith SD (1988) Coefficients for sea surface wind stress, heat flux, and wind profiles as a function of wind speed and temperature. J Geophys Res 93:15467–15474

    Article  Google Scholar 

  • Smith SD et al (1992) Sea surface wind stress and drag coefficients: the Hexos results. Bound Lay Meteorol 60:109–142

    Article  Google Scholar 

  • Soloviev A, Lukas R (2014) The near-surface layer of the ocean: structure, dynamics and applications, 2nd edn. Springer, Dordrecht

    Book  Google Scholar 

  • Stepanenko V et al (2014) Simulation of surface energy fluxes and stratification of a small boreal lake by a set of one-dimensional models. Tellus A 66:21389

    Article  Google Scholar 

  • Subin ZM, Riley WJ, Mironov D (2012) An improved lake model for climate simulations: model structure, evaluation, and sensitivity analyses in CESM1. J Adv Model Earth Syst 4:M02001. doi:10.1029/2011MS000072

    Article  Google Scholar 

  • Thiery W, Martynov A, Darchambeau F, Descy JP, Plisnier PD, Sushama L, Van Lipzig N (2014a) Understanding the performance of the FLake model over two African Great Lakes. Geosci Model Dev 7:317–337

    Article  Google Scholar 

  • Thiery W et al (2014b) LakeMIP Kivu: evaluating the representation of a large, deep tropical lake by a set of one-dimensional lake models. Tellus A 66:21390. doi:10.3402/tellusa.v66.21390

    Article  Google Scholar 

  • Tseng R, Hsu Y, Wu J (1992) Methods of measuring wind stress over a water surface—discussions of displacement height and von Karman constant. Bound Lay Meteorol 58:51–68

    Article  Google Scholar 

  • Tsukamoto O, Ohtaki E, Iwatani Y, Mitsuta Y (1991) Stability dependence of the drag and bulk transfer coefficients over a coastal sea surface. Bound-Lay Meteorol 57(4):359–375

    Article  Google Scholar 

  • Venäläinen A, Frech M, Heikinheimo M, Grelle A (1999) Comparison of latent and sensible heat fluxes over boreal lakes with concurrent fluxes over a forest: implications for regional averaging. Agr Forest Meteorol 98:535–546

    Article  Google Scholar 

  • Verburg P, Antenucci JP (2010) Persistent unstable atmospheric boundary layer enhances sensible and latent heat loss in a tropical great lake: Lake Tanganyika. J Geophys Res 115 (D11):doi: 10.1029/2009JD012839

  • Vickers D, Mahrt L (1997) Fetch limited drag coefficients. Bound Lay Meteorol 85(1):53–79

    Article  Google Scholar 

  • Vickers D, Mahrt L (2010) Sea-surface roughness lengths in the midlatitude coastal zone. Q J Roy Meteorol Soc 136(649):1089–1093

    Article  Google Scholar 

  • Webb EK, Pearman GI, Leuning R (1980) Correction of flux measurements for density effects due to heat and water vapour transfer. Q J Roy Meteorol Soc 106(447):85–100

    Article  Google Scholar 

  • Wu J (1994) The sea surface is aerodynamically rough even under light winds. Bound-Lay Meteorol 69(1–2):149–158

    Article  Google Scholar 

  • Wüest A, Lorke A (2003) Small scale hydrodynamics in lakes. Annu Rev Fluid Mech 35:373–412

    Article  Google Scholar 

  • **ao W et al (2012) Transfer coefficients of momentum, heat and water vapour in the atmospheric surface layer of a large shallow fresh water lake: a case study of Lake Taihu. J Lake Sci 24(6):932–942 (In Chinese with abstract)

    Article  Google Scholar 

  • **ao W et al (2013) Transfer coefficients of momentum, heat and water vapour in the atmospheric surface layer of a large freshwater lake. Bound Lay Meteorol 148(3):479–494

    Article  Google Scholar 

  • Xu J et al (2009) The implication of heat and water balance changes in a lake basin on the Tibetan Plateau. Hydrol Res Lett 3:1–5

    Article  Google Scholar 

  • Yang K et al (2008) Turbulent flux transfer over bare-soil surfaces: characteristics and parameterization. J Appl Met Clim 47(1):276–290

    Article  Google Scholar 

  • Yang K, Wu H, Qin J, Lin C, Tang W, Chen Y (2014) Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: a review. Global Planet Change 112:79–91

    Article  Google Scholar 

  • Yelland M, Taylor P (1996) Wind stress measurements from the open ocean. J Phys Oceanogr 26:541–558

    Article  Google Scholar 

  • Zhao L, Li J, Xu S, Zhou H, Li Y, Gu S, Zhao X (2010) Seasonal variations in carbon dioxide exchange in an alpine wetland meadow on the Qinghai-Tibetan Plateau. Biogeosciences 7:1207–1221

    Article  Google Scholar 

  • Zilitinkevich SS, Grachev AA, Fairall CW (2001) Scaling reasoning and field data on the sea surface roughness lengths for scalars. J Atmos Sci 58:320–325

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (grant 41130961), the Strategic Priority Research Program of the Chinese Academy of Sciences (grant XDB03030300), the National Natural Science Foundation of China (grant 41475011, 41405020, 41275014), and the Foundation for Excellent Young Scholars of CAREERI. We thank LucidPapers English language editing for its assistance with the manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinhuan Ao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Lyu, S., Zhao, L. et al. Turbulent transfer coefficient and roughness length in a high-altitude lake, Tibetan Plateau. Theor Appl Climatol 124, 723–735 (2016). https://doi.org/10.1007/s00704-015-1440-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-015-1440-z

Keywords

Navigation