Log in

One-pot electrochemical detection of foodborne pathogen based on in situ nucleic acid amplification and wash-free assay

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A signal amplification electrochemical biosensor chip was developed to integrate loop-mediated isothermal amplification (LAMP) based on in situ nucleic acid amplification and methyl blue (MB) serving as the hybridization redox indicator for sensitive and selective foodborne pathogen detection without a washing step. The electrochemical biosensor chip was designed by a screen-printed carbon electrode modified with gold nanoparticles (Au NPs) and covered with polydimethylsiloxane membrane to form a microcell. The primers of the target were immobilized on the Au NPs by covalent attachment for in situ amplification. The electroactive MB was used as the electrochemical signal reporter and embedded into the double-stranded DNA (dsDNA) amplicons generated by LAMP. Differential pulse voltammetry was introduced to survey the dsDNA hybridization with MB, which differentiates the specifically electrode-unbound and -bound labels without a washing step. Pyrene as the back-filling agent can further improve response signaling by reducing non-specific adsorption. This method is operationally simple, specific, and effective. The biosensor showed a detection linear range of 102–107 CFU mL−1 with the limit of detection of 17.7 CFU mL−1 within 40 min. This method showed promise for on-site testing of foodborne pathogens and could be integrated into an all-in-one device.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data that supports the findings of this study are available within the paper and its supplementary information.

References

  1. Yu Z, Qiu C, Huang L, Gao Y, Tang D (2023) Microelectromechanical microsystems-supported photothermal immunoassay for point-of-care testing of aflatoxin B1 in foodstuff. Anal Chem 95:4212–4219. https://doi.org/10.1021/acs.analchem.2c05617

    Article  CAS  PubMed  Google Scholar 

  2. Aung KT, Chen HJ, Chau ML, Yap G, Lim XF, Humaidi M, Chua C, Yeo G, Yap HM, Oh JQ, Manogaran V, Hapuarachchi HC, Maiwald M, Tee NWS, Barkham T, Koh TH, Gutiérrez RA, Schlundt J, Ng LC (2019) Salmonella in retail food and wild birds in Singapore—prevalence, antimicrobial resistance, and sequence types. Int J Environ Res Public Health 16:4235. https://doi.org/10.3390/ijerph16214235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ford L, Ellison Z, Schwensohn C, Griffin I, Birhane MG, Cote A, Fortenberry GZ, Tecle S, Higa J, Spencer S, Patton B, Patel J, Dow J, Maroufi A, Robbins A, Donovan D, Fitzgerald C, Burrell S, Tolar B, Folster JP, Cooley LA, Francois Watkins LK (2023) Strain of multidrug-resistant Salmonella Newport remains linked to travel to Mexico and U.S. beef products - United States, 2021-2022. MMWR Morb Mortal Wkly Rep 72:1225–1229. https://doi.org/10.15585/mmwr.mm7245a3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ricke SC, Kim SA, Shi Z (2018) Molecular-based identification and detection of Salmonella in food production systems: current perspectives | Journal of Applied Microbiology | Oxford Academic. J Appl Microbiol 125:313–327. https://doi.org/10.1111/jam.13888

    Article  CAS  PubMed  Google Scholar 

  5. Blanco G, Tuesta JA (2018) Culture- and molecular-based detection of swine-adapted Salmonella shed by avian scavengers. Sci Total Environ 634:1513–1518. https://doi.org/10.1016/j.scitotenv.2018.04.089

    Article  CAS  PubMed  Google Scholar 

  6. Mainar-Jaime RC, Andrés S, Vico JP, San Román B, Garrido V, Grilló MJ (2020) Sensitivity of the ISO 6579:2002/Amd 1:2007 standard method for detection of Salmonella spp. on mesenteric lymph nodes from slaughter pigs. J Clin Microbiol 51:89–94. https://doi.org/10.1128/JCM.02099-12

    Article  CAS  Google Scholar 

  7. Zhou Y-Y, Kang X-L, Meng C, **ong D, Xu Y, Geng S-Z, Pan Z-M, Jiao X-A (2020) Multiple PCR assay based on the cigR gene for detection of Salmonella spp. and Salmonella pullorum/gallinarum identification. Poult Sci 99:5991–5998. https://doi.org/10.1016/j.psj.2020.07.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rohde A, Hammerl JA, Boone I, Jansen W, Fohler S, Klein G, Dieckmann R, Al Dahouk S (2017) Overview of validated alternative methods for the detection of foodborne bacterial pathogens. Trends Food Sci Technol 62:113–118. https://doi.org/10.1016/j.tifs.2017.02.006

    Article  CAS  Google Scholar 

  9. Gu K, Song Z, Zhou C, Ma P, Li C, Lu Q, Liao Z, Huang Z, Tang Y, Li H, Zhao Y, Yan W, Lei C, Wang H (2022) Development of nanobody-horseradish peroxidase-based sandwich ELISA to detect Salmonella enteritidis in milk and in vivo colonization in chicken. J Nanobiotechnology 20:167. https://doi.org/10.1186/s12951-022-01376-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang C, Liu Z, Bai M, Wang Y, Liao X, Zhang Y, Wang P, Wei J, Zhang H, Wang J, Wang H, Wang Y (2022) An ultrasensitive sandwich chemiluminescent enzyme immunoassay based on phage-mediated double-nanobody for detection of Salmonella typhimurium in food. Sens Actuators B Chem 352:131058. https://doi.org/10.1016/j.snb.2021.131058

    Article  CAS  Google Scholar 

  11. Chen H, Qiu H, Zhong H, Cheng F, Wu Z, Shi T (2023) Non-typhoidal Salmonella infections among children in Fuzhou, Fujian, China: a 10-year retrospective review from 2012 to 2021. Infect Drug Resist 16:2737–2749. https://doi.org/10.2147/IDR.S408152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gong J, Kelly P, Wang C (2017) Prevalence and antimicrobial resistance of Salmonella enterica serovar Indiana in China (1984–2016). Zoonoses Public Health 64:239–251. https://doi.org/10.1111/zph.12328

    Article  CAS  PubMed  Google Scholar 

  13. Zhang X, Lowe SB, Gooding JJ (2014) Brief review of monitoring methods for loop-mediated isothermal amplification (LAMP). Biosens Bioelectron 61:491–499. https://doi.org/10.1016/j.bios.2014.05.039

    Article  CAS  PubMed  Google Scholar 

  14. Chen G-C, Liu C-H, Wu W-C (2021) Electrochemical immunosensor for serum parathyroid hormone using voltammetric techniques and a portable simulator. Anal Chim Acta 1143:84–92. https://doi.org/10.1016/j.aca.2020.11.045

    Article  CAS  PubMed  Google Scholar 

  15. Ye F, Qian J, **a J, Li L, Wang S, Zeng Z, Mao J, Ahamad M, **ao Z, Zhang Q (2024) Efficient photoelectrocatalytic degradation of pollutants over hydrophobic carbon felt loaded with Fe-doped porous carbon nitride via direct activation of molecular oxygen. Environ Res 249:118497. https://doi.org/10.1016/j.envres.2024.118497

    Article  CAS  PubMed  Google Scholar 

  16. Yan J, Cheng Q, Liu H, Wang L, Yu K (2023) Sensitive and rapid detection of influenza A virus for disease surveillance using dual-probe electrochemical biosensor. Bioelectrochemistry Amst Neth 153:108497. https://doi.org/10.1016/j.bioelechem.2023.108497

    Article  CAS  Google Scholar 

  17. Hashem A, Hossain MAM, Marlinda AR, Mamun MA, Sagadevan S, Shahnavaz Z, Simarani K, Johan MR (2022) Nucleic acid-based electrochemical biosensors for rapid clinical diagnosis: advances, challenges, and opportunities. Crit Rev Clin Lab Sci 59:156–177. https://doi.org/10.1080/10408363.2021.1997898

    Article  CAS  PubMed  Google Scholar 

  18. Bolourinezhad M, Rezayi M, Meshkat Z, Soleimanpour S, Mojarrad M, Zibadi F, Aghaee-Bakhtiari SH, Taghdisi SM (2023) Design of a rapid electrochemical biosensor based on MXene/Pt/C nanocomposite and DNA/RNA hybridization for the detection of COVID-19. Talanta 265:124804. https://doi.org/10.1016/j.talanta.2023.124804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wu C, Chen Z, Li C, Hao Y, Tang Y, Yuan Y, Chai L, Fan T, Yu J, Ma X, Al-Hartomy OA, Wageh S, Al-Sehemi AG, Luo Z, He Y, Li J, **e Z, Zhang H (2022) CRISPR-Cas12a-empowered electrochemical biosensor for rapid and ultrasensitive detection of SARS-CoV-2 delta variant. Nano-Micro Lett 14:159. https://doi.org/10.1007/s40820-022-00888-4

    Article  CAS  Google Scholar 

  20. Li Q, Li Y, Gao Q, Jiang C, Tian Q, Ma C, Shi C (2022) Real-time monitoring of isothermal nucleic acid amplification on a smartphone by using a portable electrochemical device for home-testing of SARS-CoV-2. Anal Chim Acta 1229:340343. https://doi.org/10.1016/j.aca.2022.340343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Guan Z, Sun Y, Ma C-B, Lee JJ, Zhang S, Zhang X, Guo Z, Du Y (2023) Dual targets-induced specific hemin/G-quadruplex assemblies for label-free electrochemical detection capable of distinguishing Salmonella and its common serotype in food samples. Biosens Bioelectron 236:115438. https://doi.org/10.1016/j.bios.2023.115438

    Article  CAS  PubMed  Google Scholar 

  22. Li Z, Ding X, Yin K, Xu Z, Cooper K, Liu C (2021) Electric field-enhanced electrochemical CRISPR biosensor for DNA detection. Biosens Bioelectron 192:113498. https://doi.org/10.1016/j.bios.2021.113498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Foguel MV, Zamora V, Ojeda J, Reed M, Bennett A, Calvo-Marzal P, Gerasimova YV, Kolpashchikov D, Chumbimuni-Torres KY (2024) DNA nanotechnology for nucleic acid analysis: sensing of nucleic acids with DNA junction-probes. Analyst 149:968–974. https://doi.org/10.1039/D3AN01707A

    Article  CAS  PubMed  Google Scholar 

  24. Pothipor C, Aroonyadet N, Bamrungsap S, Jakmunee J, Ounnunkad K (2021) A highly sensitive electrochemical microRNA-21 biosensor based on intercalating methylene blue signal amplification and a highly dispersed gold nanoparticles/graphene/polypyrrole composite. Analyst 146:2679–2688. https://doi.org/10.1039/D1AN00116G

    Article  CAS  PubMed  Google Scholar 

  25. Kim HE, Schuck A, Lee SH, Lee Y, Kang M, Kim Y-S (2021) Sensitive electrochemical biosensor combined with isothermal amplification for point-of-care COVID-19 tests. Biosens Bioelectron 182:113168. https://doi.org/10.1016/j.bios.2021.113168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yuan R, Wei J, Geng R, Li B, **ong W, Fang X, Wang K (2023) Sensitive detection of African swine fever virus p54 based on in-situ amplification of disposable electrochemical sensor chip. Sens Actuators B Chem 380:133363. https://doi.org/10.1016/j.snb.2023.133363

    Article  CAS  Google Scholar 

  27. Zheng S, Yang Q, Yang H, Zhang Y, Guo W, Zhang W (2023) An ultrasensitive and specific ratiometric electrochemical biosensor based on SRCA-CRISPR/Cas12a system for detection of Salmonella in food. Food Control 146:109528. https://doi.org/10.1016/j.foodcont.2022.109528

    Article  CAS  Google Scholar 

  28. Zhu D, Yan Y, Lei P, Shen B, Cheng W, Ju H, Ding S (2014) A novel electrochemical sensing strategy for rapid and ultrasensitive detection of Salmonella by rolling circle amplification and DNA–AuNPs probe. Anal Chim Acta 846:44–50. https://doi.org/10.1016/j.aca.2014.07.024

    Article  CAS  PubMed  Google Scholar 

  29. Wang C, Xu Z, Hou X, Wang M, Zhou C, Liang J, Wei P (2022) Rapid, sensitive, specific, and visual detection of Salmonella in retail meat with loop-mediated isothermal amplification, targeting the invA gene. J Food Prot 85:6–12. https://doi.org/10.4315/JFP-21-186

    Article  PubMed  Google Scholar 

  30. Shatleh-Rantisi D, Tamimi A, Ashhab Y (2020) Improving sensitivity of single tube nested PCR to detect fastidious microorganisms. Heliyon 6:e03246. https://doi.org/10.1016/j.heliyon.2020.e03246

    Article  PubMed  PubMed Central  Google Scholar 

  31. Valdés-Aguayo JJ, Garza-Veloz I, Vargas-Rodríguez JR, Martinez-Vazquez MC, Avila-Carrasco L, Bernal-Silva S, González-Fuentes C, Comas-García A, Alvarado-Hernández DE, Centeno-Ramirez ASH, Rodriguez-Sánchez IP, Delgado-Enciso I, Martinez-Fierro ML (2021) Peripheral blood mitochondrial DNA levels were modulated by SARS-CoV-2 infection severity and its lessening was associated with mortality among hospitalized patients with COVID-19. Front Cell Infect Microbiol 11. https://doi.org/10.3389/fcimb.2021.754708

  32. Argoubi W, Saadaoui M, Aoun SB, Raouafi N (2015) Optimized design of a nanostructured SPCE-based multipurpose biosensing platform formed by ferrocene-tethered electrochemically-deposited cauliflower-shaped gold nanoparticles. Beilstein J Nanotechnol 6:1840–1852. https://doi.org/10.3762/bjnano.6.187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yu Z, Luan Y, Li H, Wang W, Wang X, Zhang Q (2019) A disposable electrochemical aptasensor using single-stranded DNA–methylene blue complex as signal-amplification platform for sensitive sensing of bisphenol A. Sens Actuators B Chem 284:73–80. https://doi.org/10.1016/j.snb.2018.12.126

    Article  CAS  Google Scholar 

  34. Luo Z, Xu Y, Huang Z, Chen J, Wang X, Li D, Li Y, Duan Y (2020) A rapid, adaptative DNA biosensor based on molecular beacon-concatenated dual signal amplification strategies for ultrasensitive detection of p53 gene and cancer cells. Talanta 210:120638. https://doi.org/10.1016/j.talanta.2019.120638

    Article  CAS  PubMed  Google Scholar 

  35. Li J, Zhao F, Zhao J, Zeng B (2005) Adsorptive and strip** behavior of methylene blue at gold electrodes in the presence of cationic gemini surfactants. Electrochim Acta 51:297–303. https://doi.org/10.1016/j.electacta.2005.04.024

    Article  CAS  Google Scholar 

  36. Chen Y, Shi Y, Chen Y, Yang Z, Wu H, Zhou Z, Li J, ** J, He L, Shen H, Chen Z, Wu J, Yu Y, Zhang Y, Chen H (2020) Contamination-free visual detection of SARS-CoV-2 with CRISPR/Cas12a: a promising method in the point-of-care detection. Biosens Bioelectron 169:112642. https://doi.org/10.1016/j.bios.2020.112642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang N, Zhang J, **ao B, Li H, Chen J, Sun X, Huang F, Li H, Chen A (2023) Integration of in-cassette lysis, purification, and lateral flow strips-based sensor for rapid and on-site detection of yak milk adulteration. Sens Actuators B Chem 394:134309. https://doi.org/10.1016/j.snb.2023.134309

    Article  CAS  Google Scholar 

  38. Fortunati S, Vasini I, Giannetto M, Mattarozzi M, Porchetta A, Bertucci A, Careri M (2022) Controlling dynamic DNA reactions at the surface of single-walled carbon nanotube electrodes to design hybridization platforms with a specific amperometric readout. Anal Chem 94:5075–5083. https://doi.org/10.1021/acs.analchem.1c05294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hanpanich O, Lomae A, Maruyama A, Palaga T, Chailapakul O, Ngamrojanavanich N (2023) Label-free detection of HPV mRNA with an artificial chaperone-enhanced MNAzyme (ACEzyme)-based electrochemical sensor. Biosens Bioelectron 221:114352. https://doi.org/10.1016/j.bios.2022.114352

    Article  CAS  PubMed  Google Scholar 

  40. Huang X, Niu W, Wu J, Wang Y, Li C, Qiu J, Xue J (2019) A triple-amplification differential pulse voltammetry for sensitive detection of DNA based on exonuclease III, strand displacement reaction and terminal deoxynucleotidyl transferase. Biosens Bioelectron 143:111609. https://doi.org/10.1016/j.bios.2019.111609

    Article  CAS  PubMed  Google Scholar 

  41. Tang J, Zou G, Chen C, Ren J, Wang F, Chen Z (2021) Highly selective electrochemical detection of 5-formyluracil relying on (2-benzimidazolyl) acetonitrile labeling. Anal Chem 93:16439–16446. https://doi.org/10.1021/acs.analchem.1c03389

    Article  CAS  PubMed  Google Scholar 

  42. Fortunati S, Rozzi A, Curti F, Giannetto M, Corradini R, Careri M (2019) Novel amperometric genosensor based on peptide nucleic acid (PNA) probes immobilized on carbon nanotubes-screen printed electrodes for the determination of trace levels of non-amplified DNA in genetically modified (GM) soy. Biosens Bioelectron 129:7–14. https://doi.org/10.1016/j.bios.2019.01.020

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Science and Technology Benefiting the People Demonstration Project of Qingdao (22-2-7-smjk-2-nsh) and the Key Project of Shandong Province Natural Science Foundation (ZR2020KH030). This work is supported by the Taishan Industrial Experts Program.

Author information

Authors

Contributions

** Ma: Resources, Funding acquisition. Chao Shi: Conceptualization, Project administration, Funding acquisition, Supervision.

Corresponding authors

Correspondence to Longqiang Xu or Chao Shi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 33924 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Fan, Y., Gong, H. et al. One-pot electrochemical detection of foodborne pathogen based on in situ nucleic acid amplification and wash-free assay. Microchim Acta 191, 431 (2024). https://doi.org/10.1007/s00604-024-06500-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-024-06500-3

Keywords

Navigation