Log in

Green synthesis of N-rich carbon dot-derived crosslinked covalent organic nanomaterial for multipurpose chromatographic applications

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Carbon dots (CDs) derived crosslinked covalent organic nanomaterials (CONs) possessing high specific surface area and abundant surface functional groups are considered to be potential candidates for multimodal chromatographic separations. Typically, the synthesis of CDs and CONs requires harsh reaction conditions and toxic organic solvents, hence, the pursuit of facile and mild preparation strategies is the goal of researchers. In this work, 3-aminopropyltriethoxysilane and D-glucose were used as nitrogen and carbon sources, respectively, to prepare amino-CDs (AmCDs) by rapid low-temperature polymerization rather than the common high-temperature and high-pressure reaction. Then, surface functionalization of the aminated silica gel was carried out in a deep eutectic solvent by using hydrophilic AmCDs and 1,3,5-triformylbenzene (TFB) as the functional monomers. Consequently, a novel N-rich CDs derived CON surface-functionalized silica gel (AmCDs-CON@SiO2) was obtained under mild reaction conditions. The combination of AmCDs and TFB created an ideal CON based chromatographic stationary phase. The incorporation of TFB not only contributed to the successful construction of a crosslinked CON, but also enhanced the interaction forces. The developed AmCDs-CON@SiO2 has a great potential for versatile applications in liquid chromatography. This study proposes a simple stationary phase preparation strategy by the surface modification of silica gel with CDs-based CON. Moreover, this study verified the application potential of CDs derived CON in chromatographic separation. This not only promotes the development of CDs in the field of liquid chromatographic stationary phase, but also provides some reference value for the wide application of cross-linked CON.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article and the supplementary materials.

References

  1. Zhao WB, Liu KK, Wang Y et al (2023) Antibacterial carbon dots: mechanisms, design, and applications. Adv Healthc Mater 12:2300324. https://doi.org/10.1002/adhm.202300324

    Article  CAS  Google Scholar 

  2. Yu ZH, Li F, **ang QJ (2023) Carbon dots-based nanocomposites for heterogeneous photocatalysis. J Mater Sci Technol 175:244–257. https://doi.org/10.1016/j.jmst.2023.08.023

    Article  Google Scholar 

  3. Rosso C, Filippini G, Prato M (2020) Carbon dots as nano-organocatalysts for synthetic applications. ACS Catal 10:8090–8105. https://doi.org/10.1021/acscatal.0c01989

    Article  CAS  Google Scholar 

  4. Dhenadhayalan N, Lin KC, Saleh TA (2020) Recent advances in functionalized carbon dots toward the design of efficient materials for sensing and catalysis applications. Small 16:1905767. https://doi.org/10.1002/smll.201905767

    Article  CAS  Google Scholar 

  5. Li JT, Fu WJ, Zhang XY et al (2023) Green preparation of ginger-derived carbon dots accelerates wound healing. Carbon 208:208–215. https://doi.org/10.1016/j.carbon.2023.03.039

    Article  CAS  Google Scholar 

  6. Yuan N, Chen J, Cai TP et al (2020) Glucose-based carbon dots-modified silica stationary phase for hydrophilic interaction chromatography. J Chromatogr A 1619:460930. https://doi.org/10.1016/j.chroma.2020.460930

    Article  CAS  PubMed  Google Scholar 

  7. Wu YN, Tang LS, Cao MJ et al (2023) Facile and controllable synthesis of amino-modified carbon dots for efficient oil displacement. Nano Res 16:6048–6056. https://doi.org/10.1007/s12274-022-4527-8

    Article  CAS  Google Scholar 

  8. Yang YL, Zhang HJ, Chen J et al (2020) A phenylenediamine-based carbon dot-modified silica stationary phase for hydrophilic interaction chromatography. Analyst 145:1056–1061. https://doi.org/10.1039/C9AN02246E

    Article  CAS  PubMed  Google Scholar 

  9. Chai PJ, Geng XH, Zhu RR (2023) Fabrication and application of molecularly imprinted polymer doped carbon dots coated silica stationary phase. Anal Chim Acta 1275:341611. https://doi.org/10.1016/j.aca.2023.341611

    Article  CAS  PubMed  Google Scholar 

  10. Wu Q, Hou XD, Zhang XF et al (2021) Amphipathic carbon quantum dots-functionalized silica stationary phase for reversed phase/hydrophilic interaction chromatography. Talanta 226:122148. https://doi.org/10.1016/j.talanta.2021.122148

    Article  CAS  PubMed  Google Scholar 

  11. Wu Y, Zhang N, Luo KX et al (2022) Recent advances of innovative and high-efficiency stationary phases for chromatographic separations. Trends Anal Chem 153:116647. https://doi.org/10.1016/j.trac.2022.116647

    Article  CAS  Google Scholar 

  12. Fu YY, Li ZT, Hu CJ et al (2022) Synthesis of carbon dots-based covalent organic nanomaterial as stationary phase for open tubular capillary electrochromatography. J Chromatogr A 1678:463343. https://doi.org/10.1016/j.chroma.2022.463343

    Article  CAS  PubMed  Google Scholar 

  13. Liu X, Liu CF, Xu SH et al (2022) Porous organic polymers for high-performance supercapacitors. Chem Soc Rev 51:3181–3225. https://doi.org/10.1039/D2CS00065B

    Article  CAS  PubMed  Google Scholar 

  14. Liu YF, Shang SQ, Wei W.J et al (2023) Ionic liquid/covalent organic framework/silica composite material: Green synthesis and chromatographic evaluation. Anal Chim Acta 1283:341992. https://https://doi.org/10.1016/j.aca.2023.341992

  15. Li X, Cui YY, Yang CX (2021) Covalent coupling fabrication of microporous organic network bonded capillary columns for gas chromatographic separation. Talanta 224:121914. https://doi.org/10.1016/j.talanta.2020.121914

    Article  CAS  PubMed  Google Scholar 

  16. Wei WB, Zhou SH, Ma DD et al (2023) Ultrathin conductive bithiazole-based covalent organic framework nanosheets for highly efficient electrochemical biosensing. Adv Funct Mater 33:2302917. https://doi.org/10.1002/adfm.202302917

    Article  CAS  Google Scholar 

  17. Torabi E, Mirzaei M, Bazargan M et al (2022) A critical review of covalent organic frameworks-based sorbents in extraction methods. Anal Chim Acta 1224:340207. https://doi.org/10.1016/j.aca.2022.340207

    Article  CAS  PubMed  Google Scholar 

  18. Wei WJ, Long HY, Liu YJ et al (2023) Preparation and application of a novel imine-linked covalent organic framework@silica composite for reversed-phase and hydrophilic interaction chromatographic separations. Anal Chim Acta 1276:341635. https://doi.org/10.1016/j.aca.2023.341635

    Article  CAS  PubMed  Google Scholar 

  19. Chen T, Wang SY, Zong XF et al (2023) Preparation and application of sulfated lily polysaccharide bridged polyhedral oligomeric silsesquioxane hybrid organosilicas as stationary phase. J Chromatogr A 1619:463822. https://doi.org/10.1016/j.chroma.2023.463822

    Article  CAS  Google Scholar 

  20. Wu Y, Cao PP, Jiang YH et al (2022) Ingenious introduction of aminopropylimidazole to tune the hydrophobic selectivity of dodecyl-bonded stationary phase for environmental organic pollutants. Microchem J 182:107933. https://doi.org/10.1016/j.microc.2022.107933

    Article  CAS  Google Scholar 

  21. Luo KX, Luo Y, Liu YJ et al (2022) Hydrophobic and hydrophilic selectivity of a multifunctional carbonyldiimidazolium/dodecyl modified silica stationary phase. J Chromatogr A 1677:463300. https://doi.org/10.1016/j.chroma.2022.463300

    Article  CAS  PubMed  Google Scholar 

  22. Luo KX, Gao YY, Zhang YF et al (2023) Chitosan/polyacrylic acid/octadecene double-crosslinked network hydrogel functionalized porous silica microspheres for multimode liquid chromatographic separation. J Chromatogr A 1709:464390. https://doi.org/10.1016/j.chroma.2023.464390

    Article  CAS  PubMed  Google Scholar 

  23. Wang X, Peng HJ, Zhang ZL et al (2024) Graft copolymerization of anion and cation onto silica and application in mixed-mode of reversed phase/hydrophilic interaction/ion exchange chromatography. Talanta 266:125055. https://doi.org/10.1016/j.talanta.2023.125055

    Article  CAS  PubMed  Google Scholar 

  24. Liu CY, Luo KX, Cao PP et al (2023) Green preparation of composite hydrogel coated hydrophobic long-chain carboxylic acid-bonded silica microspheres for mixed-mode chromatography. Microchem J 193:109104. https://doi.org/10.1016/j.microc.2023.109104

    Article  CAS  Google Scholar 

  25. Luo KX, Zhao LL, Liu YJ et al (2023) Hydrophobic/hydrophilic separation performance evaluation of a mixed-mode ionic liquid embedded stearyl thioglycolate functionalized silica stationary phase. J Chromatogr A 1706:464390. https://doi.org/10.1016/j.chroma.2023.464279

    Article  CAS  Google Scholar 

  26. Cai TP, Sun XY, Chen J et al (2023) Tetraethylenepentamine-derived carbon dots and tetraethylenepentamine co-immobilized silica stationary phase for hydrophilic interaction chromatography. J Chromatogr A 1707:464325. https://doi.org/10.1016/j.chroma.2023.464325

    Article  CAS  PubMed  Google Scholar 

  27. Yang YL, Li Y, Long ZL et al (2023) A C4-modified bipyridinium multi-mode stationary phase for reversed phase, hydrophilic interaction and ion exchange chromatography. Anal Methods 15:6286. https://doi.org/10.1039/D3AY01796F

    Article  CAS  PubMed  Google Scholar 

  28. Hu ZF, Jiang YH, Cao PP et al (2023) Performance evaluation of 2-undecylimidazole/propyl methacrylate bifunctional silica gel for mixed-mode reversed-phase/anion-exchange chromatography. Microchem J 191:108768. https://doi.org/10.1016/j.microc.2023.108768

    Article  CAS  Google Scholar 

  29. Long HY, Jiang YH, Liu YJ et al (2023) Chromatographic separation performance of silica microspheres surface-modified with triazine-containing imine-linked covalent organic frameworks. Talanta 260:124589. https://doi.org/10.1016/j.talanta.2023.124589

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was supported by the National Natural Science Foundation of China (No. 21906124), Natural Science Foundation of Hubei Province (No. 2017CFB220) and Graduate Innovative Fund of Wuhan Institute of Technology (No. CX2022430).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng Tang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6.46 MB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, W., Zhao, L., Si, T. et al. Green synthesis of N-rich carbon dot-derived crosslinked covalent organic nanomaterial for multipurpose chromatographic applications. Microchim Acta 191, 345 (2024). https://doi.org/10.1007/s00604-024-06435-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-024-06435-9

Keywords

Navigation