Log in

Solvent-assisted dispersive liquid-solid phase extraction of organophosphorus pesticides using a polypyrrole thin film–coated porous composite magnetic sorbent prior to their determination with GC-MS/MS

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A porous composite magnetic sorbent was developed and used as a solid phase for the solvent-assisted preconcentration of organophosphorus pesticides. The hierarchical porous composite sorbent was composed of polypyrrole thin film coated on the surface of porous alginate beads with embedded magnetite nanoparticles. The pores in the alginate hydrogel beads were produced by carbon dioxide bubbles from the reaction of incorporated calcium carbonate with hydrochloric acid. The porous network was filled with dichloromethane to assist extraction. The fabricated porous composite sorbent was characterized and sorbent fabrication and extraction conditions were optimized to obtain the best extraction performance. The developed sorbent was coupled with GC-MS/MS to determine organophosphorus pesticides in fruit juices and vegetable. Under optimized condition, the developed method provided good linear range of 0.03–200 μg L−1 for dichlorvos, malathion, and fenthion, and 0.075–200 μg L−1 for mevinphos, dimethoate, and parathion methyl, respectively. Limits of detection were in the range 0.010 to 0.025 μg L−1. This method exhibited good relative recoveries in the range 84 to 99% and RSDs lower than 8%. The good stability of the sorbent enabled up to eight cycles of reuse.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Muckoya VA, Idris AO, Nomngongo PN, Ngila JC (2019) Synthesized carbon nanodots for simultaneous extraction of personal care products and organophosphorus pesticides in wastewater samples prior to LC-MS/MS determination. Anal Bioanal Chem 411(23):6173–6187. https://doi.org/10.1007/s00216-019-02009-4

    Article  CAS  PubMed  Google Scholar 

  2. Jafari MT, Saraji M, Kermani M (2018) Sol-gel electrospinning preparation of hybrid carbon silica nanofibers for extracting organophosphorus pesticides prior to analyzing them by gas chromatography-ion mobility spectrometry. J Chromatogr A 1558:1–13. https://doi.org/10.1016/j.chroma.2018.05.014

    Article  CAS  PubMed  Google Scholar 

  3. Amiri A, Saadati-Moshtaghin HR, Zonoz FM (2018) A hybrid material composed of a polyoxometalate of type BeW12O40 and an ionic liquid immobilized onto magnetic nanoparticles as a sorbent for the extraction of organophosphorus pesticides prior to their determination by gas chromatography. Microchim Acta 185(3):176. https://doi.org/10.1007/s00604-018-2713-x

    Article  CAS  Google Scholar 

  4. Fernandes VC, Freitas M, Pacheco JPG, Oliveira JM, Domingues VF, Delerue-Matos C (2018) Magnetic dispersive micro solid-phase extraction and gas chromatography determination of organophosphorus pesticides in strawberries. J Chromatogr A 1566:1–12. https://doi.org/10.1016/j.chroma.2018.06.045

    Article  CAS  PubMed  Google Scholar 

  5. Fu J, Yao Y, An X, Wang G, Guo Y, Sun X, Li F (2019) Voltammetric determination of organophosphorus pesticides using a hairpin aptamer immobilized in a graphene oxide-chitosan composite. Microchim Acta 187(1):36. https://doi.org/10.1007/s00604-019-4022-4

    Article  CAS  Google Scholar 

  6. Cai Y, Fang J, Wang B, Zhang F, Shao G, Liu Y (2019) A signal-on detection of organophosphorus pesticides by fluorescent probe based on aggregation-induced emission. Sens Actuators B Chem 292:156–163. https://doi.org/10.1016/j.snb.2019.04.123

    Article  CAS  Google Scholar 

  7. Liu M, Wei J, Wang Y, Ouyang H, Fu Z (2019) Dopamine-functionalized upconversion nanoparticles as fluorescent sensors for organophosphorus pesticide analysis. Talanta 195:706–712. https://doi.org/10.1016/j.talanta.2018.11.105

    Article  CAS  PubMed  Google Scholar 

  8. Dissanayake NM, Arachchilage JS, Samuels TA, Obare SO (2019) Highly sensitive plasmonic metal nanoparticle-based sensors for the detection of organophosphorus pesticides. Talanta 200:218–227. https://doi.org/10.1016/j.talanta.2019.03.042

    Article  CAS  PubMed  Google Scholar 

  9. Gao L, Liu L, Sun Y, Zhao W, He L (2020) Fabrication of a novel azamacrocycle-based adsorbent for solid-phase extraction of organophosphorus pesticides in tea drinks. Microchem J 153:104364. https://doi.org/10.1016/j.microc.2019.104364

    Article  CAS  Google Scholar 

  10. Lin X, Wang X, Wang J, Yuan Y, Di S, Wang Z, Xu H, Zhao H, Qi P, Ding W (2020) Facile synthesis of a core-shell structured magnetic covalent organic framework for enrichment of organophosphorus pesticides in fruits. Anal Chim Acta 1101:65–73. https://doi.org/10.1016/j.aca.2019.12.012

    Article  CAS  PubMed  Google Scholar 

  11. Shakourian M, Yamini Y, Safari M (2020) Facile magnetization of metal–organic framework TMU-6 for magnetic solid-phase extraction of organophosphorus pesticides in water and rice samples. Talanta 218:121139. https://doi.org/10.1016/j.talanta.2020.121139

    Article  CAS  PubMed  Google Scholar 

  12. Li D, He M, Chen B, Hu B (2019) Metal organic frameworks-derived magnetic nanoporous carbon for preconcentration of organophosphorus pesticides from fruit samples followed by gas chromatography-flame photometric detection. J Chromatogr A 1583:19–27. https://doi.org/10.1016/j.chroma.2018.11.012

    Article  CAS  PubMed  Google Scholar 

  13. Mehrani Z, Ebrahimzadeh H, Aliakbar AR, Asgharinezhad AA (2018) A poly(4-nitroaniline)/poly(vinyl alcohol) electrospun nanofiber as an efficient nanosorbent for solid phase microextraction of diazinon and chlorpyrifos from water and juice samples. Microchim Acta 185(8):384. https://doi.org/10.1007/s00604-018-2911-6

    Article  CAS  Google Scholar 

  14. Muckoya VA, Nomngongo PN, Ngila JC (2020) Determination of organophosphorus pesticides in wastewater samples using vortex-assisted dispersive liquid–liquid microextraction with liquid chromatography–mass spectrometry. Int J Environ Sci Technol 17(4):2325–2336. https://doi.org/10.1007/s13762-020-02625-z

    Article  CAS  Google Scholar 

  15. Nurrokhimah M, Nurerk P, Kanatharana P, Bunkoed O (2019) A nanosorbent consisting of a magnetic molecularly imprinted polymer and graphene oxide for multi-residue analysis of cephalosporins. Microchim Acta 186(12):822. https://doi.org/10.1007/s00604-019-3985-5

    Article  CAS  Google Scholar 

  16. Pinsrithong S, Bunkoed O (2018) Hierarchical porous nanostructured polypyrrole-coated hydrogel beads containing reduced graphene oxide and magnetite nanoparticles for extraction of phthalates in bottled drinks. J Chromatogr A 1570:19–27. https://doi.org/10.1016/j.chroma.2018.07.074

    Article  CAS  PubMed  Google Scholar 

  17. Aladaghlo Z, Fakhari AR, Alavioon SI, Dabiri M (2020) A mesoporous nanosorbent composed of silica, graphene, and palladium (II) for ultrasound-assisted dispersive solid-phase extraction of organophosphorus pesticides prior to their quantitation by ion mobility spectrometry. Microchim Acta 187(4):209. https://doi.org/10.1007/s00604-020-4174-2

    Article  CAS  Google Scholar 

  18. Wang P, Luo M, Liu D, Zhan J, Liu X, Wang F, Zhou Z, Wang P (2018) Application of a magnetic graphene nanocomposite for organophosphorus pesticide extraction in environmental water samples. J Chromatogr A 1535:9–16. https://doi.org/10.1016/j.chroma.2018.01.003

    Article  CAS  PubMed  Google Scholar 

  19. Chahkandi M, Amiri A, Arami SRS (2019) Extraction and preconcentration of organophosphorus pesticides from water samples and fruit juices utilizing hydroxyapatite/Fe3O4 nanocomposite. Microchem J 144:261–269. https://doi.org/10.1016/j.microc.2018.09.018

    Article  CAS  Google Scholar 

  20. Mohammadi V, Jafari MT, Saraji M (2019) Flexible/self-supported zeolitic imidazolate framework-67 film as an adsorbent for thin-film microextraction. Microchem J 146:98–105. https://doi.org/10.1016/j.microc.2018.12.066

    Article  CAS  Google Scholar 

  21. Wang J, Mou Z-L, Duan H-L, Ma S-Y, Zhang J, Zhang Z-Q (2019) A magnetic hyperbranched polyamide amine-based quick, easy, cheap, effective, rugged and safe method for the detection of organophosphorus pesticide residues. J Chromatogr A 1585:202–206. https://doi.org/10.1016/j.chroma.2018.11.071

    Article  CAS  PubMed  Google Scholar 

  22. Du L, Wang X, Liu T, Li J, Wang J, Gao M, Wang H (2019) Magnetic solid-phase extraction of organophosphorus pesticides from fruit juices using NiFe2O4@polydopamine@Mg/Al-layered double hydroxides nanocomposites as an adsorbent. Microchem J 150:104128. https://doi.org/10.1016/j.microc.2019.104128

    Article  CAS  Google Scholar 

  23. Hye JN, Eun BP, Duk-YJ (2016) Bioinspired polydopamine-layered double hydroxide nanocomposites: controlled synthesis and multifunctional performance. RSC Adv 6:24952–24958. https://doi.org/10.1039/c5ra28103b

    Article  Google Scholar 

  24. Boulanouar S, Mezzache S, Combès A, Pichon V (2018) Molecularly imprinted polymers for the determination of organophosphorus pesticides in complex samples. Talanta 176:465–478. https://doi.org/10.1016/j.talanta.2017.08.067

    Article  CAS  PubMed  Google Scholar 

  25. Kermani M, Jafari MT, Saraji M (2019) Porous magnetized carbon sheet nanocomposites for dispersive solid-phase microextraction of organophosphorus pesticides prior to analysis by gas chromatography-ion mobility spectrometry. Microchim Acta 186(2):88. https://doi.org/10.1007/s00604-018-3215-6

    Article  CAS  Google Scholar 

  26. Bunkoed O, Kanatharana P (2015) Extraction of polycyclic aromatic hydrocarbons with a magnetic sorbent composed of alginate, magnetite nanoparticles and multiwalled carbon nanotubes. Microchim Acta 182(7):1519–1526. https://doi.org/10.1007/s00604-015-1484-x

    Article  CAS  Google Scholar 

  27. Chullasat K, Nurerk P, Kanatharana P, Kueseng P, Sukchuay T, Bunkoed O (2017) Hybrid monolith sorbent of polypyrrole-coated graphene oxide incorporated into a polyvinyl alcohol cryogel for extraction and enrichment of sulfonamides from water samples. Anal Chim Acta 961:59–66. https://doi.org/10.1016/j.aca.2017.01.052

    Article  CAS  PubMed  Google Scholar 

  28. Bunkoed O, Nurerk P, Wannapob R, Kanatharana P (2016) Polypyrrole-coated alginate/magnetite nanoparticles composite sorbent for the extraction of endocrine-disrupting compounds. J Sep Sci 39(18):3602–3609. https://doi.org/10.1002/jssc.201600647

    Article  CAS  PubMed  Google Scholar 

  29. Saraji M, Jafari MT, Mossaddegh M (2016) Carbon nanotubes@silicon dioxide nanohybrids coating for solid-phase microextraction of organophosphorus pesticides followed by gas chromatography–corona discharge ion mobility spectrometric detection. J Chromatogr A 1429:30–39. https://doi.org/10.1016/j.chroma.2015.12.008

    Article  CAS  PubMed  Google Scholar 

  30. Mahpishanian S, Sereshti H (2016) Three-dimensional graphene aerogel-supported iron oxide nanoparticles as an efficient adsorbent for magnetic solid phase extraction of organophosphorus pesticide residues in fruit juices followed by gas chromatographic determination. J Chromatogr A 1443:43–53. https://doi.org/10.1016/j.chroma.2016.03.046

    Article  CAS  PubMed  Google Scholar 

  31. Frugeri PM, da Silva Cavalcanti MH, do Lago AC, Figueiredo EC, Tarley CRT, Wisniewski C, Luccas PO (2020) Magnetic restricted-access carbon nanotubes for the extraction/pre-concentration of organophosphates from food samples followed by spectrophotometric determination. Spectrochim Acta A Mol Biomol Spectrosc 241:118632. https://doi.org/10.1016/j.saa.2020.118632

    Article  CAS  PubMed  Google Scholar 

  32. Xu Z, Fang G, Wang S (2010) Molecularly imprinted solid phase extraction coupled to high-performance liquid chromatography for determination of trace dichlorvos residues in vegetables. Food Chem 119(2):845–850. https://doi.org/10.1016/j.foodchem.2009.08.047

    Article  CAS  Google Scholar 

  33. Timofeeva I, Shishov A, Kanashina D, Dzema D, Bulatov A (2017) On-line in-syringe sugaring-out liquid-liquid extraction coupled with HPLC-MS/MS for the determination of pesticides in fruit and berry juices. Talanta 167:761–767. https://doi.org/10.1016/j.talanta.2017.01.008

    Article  CAS  PubMed  Google Scholar 

  34. Amiri A, Tayebee R, Abdar A, Narenji Sani F (2019) Synthesis of a zinc-based metal-organic framework with histamine as an organic linker for the dispersive solid-phase extraction of organophosphorus pesticides in water and fruit juice samples. J Chromatogr A 1597:39–45. https://doi.org/10.1016/j.chroma.2019.03.039

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Sirintorn Jullakan was supported by the Royal Golden Jubilee PhD Program. The authors acknowledge the Center of Excellence for Innovation in Chemistry (PERCH-CIC), the National Research Council of Thailand, and the Ministry of Higher Education, Science, Research and Innovation. The authors thank Mr. Thomas Duncan Coyne for English proofreading.

Funding

This work was supported by the Prince of Songkla University (Grant No. SEC6202030S).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sakchaibordee Pinsrithong.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 6721 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jullakan, S., Bunkoed, O. & Pinsrithong, S. Solvent-assisted dispersive liquid-solid phase extraction of organophosphorus pesticides using a polypyrrole thin film–coated porous composite magnetic sorbent prior to their determination with GC-MS/MS. Microchim Acta 187, 677 (2020). https://doi.org/10.1007/s00604-020-04649-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-04649-1

Keywords

Navigation