Log in

A review on nanomaterial-based field effect transistor technology for biomarker detection

  • Review Article
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Field effect transistor (FET) based sensors have attractive features such as small size, ease of mass production, high versatility and comparably low costs. Over the last decade, many FET type biosensors based on various nanomaterials (e.g. silicon nanowires, graphene, and transition metal dichalcogenides) have been developed to detect various classes of biomolecular targets due to their integration into portable and rapid test systems, both for use in the clinical lab and in point-of-care testing. This review (with 197 refs.) starts with an introduction into the specific features of FET biosensor technology. This is followed by a description of the essentials of methods for immobilization of recognition elements. The next section discusses the progress that has been made in FET based biosensors using semiconducting nanostructures composed of silicon, graphene, metal oxides, and transition metal dichalcogenides. A further section is devoted to microfluidic systems combined with FET biosensors. We then emphasize the biosensing applications of these diagnostic devices for analysis of clinically relevant biomarkers, specifically to sensing of neurotransmitters, metabolites, nucleic acids, proteins, cancer and cardiac biomarkers. Two tables are presented which summarize advances in applications of 1D and 2D nanomaterial-based FETs for biomarker sensing. A concluding section summarizes the current status, addresses current challenges, and gives perspective trends for the field.

Field effect transistor devices based on the use of 1D and 2D semiconductor nanostructures (so called nano-FETs) are making use of materials including silicon nanowires, graphene, zinc oxide, indium oxide, titanium oxide, and molybdenum disulfide that are further modified with recognition elements for biosensing application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zhou W, Gao X, Liu D, Chen X (2015) Gold nanoparticles for in vitro diagnostics. Chem Rev 115(19):10575–10636

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Luo X, Davis JJ (2013) Electrical biosensors and the label free detection of protein disease biomarkers. Chem Soc Rev 42(13):5944–5962

    CAS  PubMed  Google Scholar 

  3. Nehra A, Singh KP (2015) Current trends in nanomaterial embedded field effect transistor-based biosensor. Biosens Bioelectron 74:731–743. https://doi.org/10.1016/j.bios.2015.07.030

    Article  CAS  PubMed  Google Scholar 

  4. Mao S, Chang J, Pu H, Lu G, He Q, Zhang H, Chen J (2017) Two-dimensional nanomaterial-based field-effect transistors for chemical and biological sensing. Chem Soc Rev 46(22):6872–6904. https://doi.org/10.1039/c6cs00827e

    Article  CAS  PubMed  Google Scholar 

  5. Zhang A, Lieber CM (2016) Nano-bioelectronics. Chem Rev 116(1):215–257. https://doi.org/10.1021/acs.chemrev.5b00608

    Article  CAS  PubMed  Google Scholar 

  6. Pachauri V, Ingebrandt S (2016) Biologically sensitive field-effect transistors: from ISFETs to NanoFETs. Essays Biochem 60(1):81–90

    PubMed  PubMed Central  Google Scholar 

  7. Syedmoradi L, Daneshpour M, Alvandipour M, Gomez FA, Hajghassem H, Omidfar K (2017) Point of care testing: the impact of nanotechnology. Biosens Bioelectron 87:373–387

    CAS  PubMed  Google Scholar 

  8. Forsyth R, Devadoss A, Guy OJ (2017) Graphene field effect transistors for biomedical applications: current status and future prospects. Diagnostics 7(3). https://doi.org/10.3390/diagnostics7030045

  9. Du X, Li Y, Motley JR, Stickle WF, Herman GS (2016) Glucose sensing using functionalized amorphous In–Ga–Zn–O field-effect transistors. ACS Appl Mater Interfaces 8(12):7631–7637

    CAS  PubMed  Google Scholar 

  10. Lu N, Gao A, Dai P, Song S, Fan C, Wang Y, Li T (2014) CMOS-compatible silicon nanowire field-effect transistors for ultrasensitive and label-free microRNAs sensing. Small 10(10):2022–2028

    CAS  PubMed  Google Scholar 

  11. **e H, Li Y-T, Lei Y-M, Liu Y-L, **ao M-M, Gao C, Pang D-W, Huang W-H, Zhang Z-Y, Zhang G-J (2016) Real-time monitoring of nitric oxide at single-cell level with porphyrin-functionalized graphene field-effect transistor biosensor. Anal Chem 88(22):11115–11122

    CAS  PubMed  Google Scholar 

  12. Sireesha M, Jagadeesh Babu V, Kranthi Kiran AS, Ramakrishna S (2018) A review on carbon nanotubes in biosensor devices and their applications in medicine. Nanocomposites 4(2):36–57

    CAS  Google Scholar 

  13. Bhardwaj T (2014) A review on immobilization techniques of biosensors. Int J Eng 3(5):294–298

    Google Scholar 

  14. Nicu L, Leichle T (2008) Biosensors and tools for surface functionalization from the macro-to the nanoscale: the way forward. J Appl Phys 104(11):111101–111116. https://doi.org/10.1063/1.2973147

    Article  CAS  Google Scholar 

  15. Omidfar K, Kia S, Larijani B (2011) Development of a colloidal gold-based immunochromatographic test strip for screening of microalbuminuria. Hybridoma 30(2):117–124

    CAS  PubMed  Google Scholar 

  16. Kashanian S, Rasaee M, Paknejad M, Omidfar K, Pour-Amir M, Rajabi BM (2002) Preparation and characterization of monoclonal antibody against digoxin. Hybrid Hybridomics21(5):375–379

    CAS  PubMed  Google Scholar 

  17. Omidfar K, Rasaee M, Modjtahedi H, Forouzandeh M, Taghikhani M, Bakhtiari A, Paknejad M, Kashanian S (2004) Production and characterization of a new antibody specific for the mutant EGF receptor, EGFRvIII, in Camelus bactrianus. Tumor Biol 25(4):179–187

    CAS  Google Scholar 

  18. Daneshpour M, Omidfar K, Ghanbarian H (2016) A novel electrochemical nanobiosensor for the ultrasensitive and specific detection of femtomolar-level gastric cancer biomarker miRNA-106a. Beilstein J Nanotechnol 7:2023–2036. https://doi.org/10.3762/bjnano.7.193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Daneshpour M, Syedmoradi L, Izadi P, Omidfar K (2016) Femtomolar level detection of RASSF1A tumor suppressor gene methylation by electrochemical nano-genosensor based on Fe3O4/TMC/au nanocomposite and PT-modified electrode. Biosens Bioelectron 77:1095–1103. https://doi.org/10.1016/j.bios.2015.11.007

    Article  CAS  PubMed  Google Scholar 

  20. Khorsand F, Riahi S, Fard SE, Kashanian S, Naeemy A, Larijani B, Omidfar K (2013) Development of 3-hydroxybutyrate dehydrogenase enzyme biosensor based on carbon nanotube-modified screen-printed electrode. IET Nanobiotechnology 7(1):1–6

    CAS  PubMed  Google Scholar 

  21. Liu QZ, Liu YH, Wu FQ, Cao X, Li Z, Alharbi M, Abbas AN, Amer MR, Zhou CW (2018) Highly sensitive and wearable In2O3 nanoribbon transistor biosensors with integrated on-chip gate for glucose monitoring in body fluids. ACS Nano 12(2):1170–1178. https://doi.org/10.1021/acsnano.7b06823

    Article  CAS  PubMed  Google Scholar 

  22. Watstein DM, Styczynski MP (2017) Development of a pigment-based whole-cell zinc biosensor for human serum. ACS Synth Biol 7(1):267–275

    PubMed  PubMed Central  Google Scholar 

  23. Yue H, He Y, Fan E, Wang L, Lu S, Fu Z (2017) Label-free electrochemiluminescent biosensor for rapid and sensitive detection of pseudomonas aeruginosa using phage as highly specific recognition agent. Biosens Bioelectron 94:429–432

    CAS  PubMed  Google Scholar 

  24. Omidfar K, Daneshpour M (2015) Advances in phage display technology for drug discovery. Expert Opin Drug Discovery 10(6):651–669

    CAS  Google Scholar 

  25. Makhneva E, Manakhov A, Skládal P, Zajíčková L (2016) Development of effective QCM biosensors by cyclopropylamine plasma polymerization and antibody immobilization using cross-linking reactions. Surf Coat Technol 290:116–123

    CAS  Google Scholar 

  26. Nunes GS, Jeanty G, Marty J-L (2004) Enzyme immobilization procedures on screen-printed electrodes used for the detection of anticholinesterase pesticides: comparative study. Anal Chim Acta 523(1):107–115

    Google Scholar 

  27. Omidfar K, Zarei H, Gholizadeh F, Larijani B (2012) A high-sensitivity electrochemical immunosensor based on mobile crystalline material-41–polyvinyl alcohol nanocomposite and colloidal gold nanoparticles. Anal Biochem 421(2):649–656

    CAS  PubMed  Google Scholar 

  28. Ronda L, Bruno S, Campanini B, Mozzarelli A, Abbruzzetti S, Viappiani C, Cupane A, Levantino M, Bettati S (2015) Immobilization of proteins in silica gel: biochemical and biophysical properties. Curr Org Chem 19(17):1653–1668

    CAS  Google Scholar 

  29. Shen M-Y, Li B-R, Li Y-K (2014) Silicon nanowire field-effect-transistor based biosensors: from sensitive to ultra-sensitive. Biosens Bioelectron 60:101–111

    CAS  PubMed  Google Scholar 

  30. Zafar S, D'Emic C, Jagtiani A, Kratschmer E, Miao X, Zhu Y, Mo R, Sosa N, Hamann H, Shahidi G, Riel H (2018) Silicon nanowire field effect transistor sensors with minimal sensor-to-sensor variations and enhanced sensing characteristics. ACS Nano 12(7):6577–6587. https://doi.org/10.1021/acsnano.8b01339

    Article  CAS  PubMed  Google Scholar 

  31. Zhou W, Dai X, Lieber CM (2016) Advances in nanowire bioelectronics. Rep Prog Phys 80(1):016701. https://doi.org/10.1088/0034-4885/80/1/016701

    Article  CAS  PubMed  Google Scholar 

  32. Day RW, Mankin MN, Gao R, No Y-S, Kim S-K, Bell DC, Park H-G, Lieber CM (2015) Plateau–Rayleigh crystal growth of periodic shells on one-dimensional substrates. Nat Nanotechnol 10(4):345–352. https://doi.org/10.1038/nnano.2015.23

    Article  CAS  PubMed  Google Scholar 

  33. Tran DP, Pham TTT, Wolfrum B, Offenhausser A, Thierry B (2018) CMOS-compatible silicon nanowire field-effect transistor biosensor: technology development toward commercialization. Materials (Basel) 11(5). https://doi.org/10.3390/ma11050785

  34. He B, Morrow TJ, Keating CD (2008) Nanowire sensors for multiplexed detection of biomolecules. Curr Opin Chem Biol 12(5):522–528

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Yu G, Cao A, Lieber CM (2007) Large-area blown bubble films of aligned nanowires and carbon nanotubes. Nat Nanotechnol 2(6):372–377. https://doi.org/10.1038/nnano.2007.150

    Article  CAS  PubMed  Google Scholar 

  36. Huang Y, Duan X, Wei Q, Lieber CM (2001) Directed assembly of one-dimensional nanostructures into functional networks. Science 291(5504):630–633

    CAS  PubMed  Google Scholar 

  37. Freer EM, Grachev O, Duan X, Martin S, Stumbo DP (2010) High-yield self-limiting single-nanowire assembly with dielectrophoresis. Nat Nanotechnol 5(7):525–530. https://doi.org/10.1038/nnano.2010.106

    Article  CAS  PubMed  Google Scholar 

  38. Durham JW 3rd, Zhu Y (2013) Fabrication of functional nanowire devices on unconventional substrates using strain-release assembly. ACS Appl Mater Interfaces 5(2):256–261. https://doi.org/10.1021/am302384z

    Article  CAS  PubMed  Google Scholar 

  39. Namdari P, Daraee H, Eatemadi A (2016) Recent advances in silicon nanowire biosensors: synthesis methods, properties, and applications. Nanoscale Res Lett 11(1):406. https://doi.org/10.1186/S11671-016-1618-Z

    Article  PubMed  PubMed Central  Google Scholar 

  40. Peled A, Pevzner A, Soroka HP, Patolsky F (2014) Morphological and chemical stability of silicon nanostructures and their molecular overlayers under physiological conditions: towards long-term implantable nanoelectronic biosensors. J Nanobiotechnol 12(1):7. https://doi.org/10.1186/1477-3155-12-7

    Article  CAS  Google Scholar 

  41. Zheng G, Lieber CM (2011) Nanowire biosensors for label-free, real-time, ultrasensitive protein detection. Methods Mol Biol 790:223–237. https://doi.org/10.1007/978-1-61779-319-6_18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lin SP, Chi TY, Lai TY, Liu MC (2012) Investigation into the effect of varied functional biointerfaces on silicon nanowire MOSFETs. Sensors (Basel) 12(12):16867–16878. https://doi.org/10.3390/s121216867

    Article  CAS  Google Scholar 

  43. Aissaoui N, Bergaoui L, Landoulsi J, Lambert JF, Boujday S (2012) Silane layers on silicon surfaces: mechanism of interaction, stability, and influence on protein adsorption. Langmuir 28(1):656–665. https://doi.org/10.1021/la2036778

    Article  CAS  PubMed  Google Scholar 

  44. Bunimovich YL, Shin YS, Yeo W-S, Amori M, Kwong G, Heath JR (2006) Quantitative real-time measurements of DNA hybridization with alkylated nonoxidized silicon nanowires in electrolyte solution. J Am Chem Soc 128(50):16323–16331

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Cicero RL, Linford MR, Chidsey CE (2000) Photoreactivity of unsaturated compounds with hydrogen-terminated silicon (111). Langmuir 16(13):5688–5695

    CAS  Google Scholar 

  46. Li J, Zhang Y, To S, You L, Sun Y (2011) Effect of nanowire number, diameter, and do** density on nano-FET biosensor sensitivity. ACS Nano 5(8):6661–6668

    CAS  PubMed  Google Scholar 

  47. Elnathan R, Kwiat M, Pevzner A, Engel Y, Burstein L, Khatchtourints A, Lichtenstein A, Kantaev R, Patolsky F (2012) Biorecognition layer engineering: overcoming screening limitations of nanowire-based FET devices. Nano Lett 12(10):5245–5254

    CAS  PubMed  Google Scholar 

  48. Zhang GJ, Ning Y (2012) Silicon nanowire biosensor and its applications in disease diagnostics: a review. Anal Chim Acta 749:1–15. https://doi.org/10.1016/j.aca.2012.08.035

    Article  CAS  PubMed  Google Scholar 

  49. Poghossian A, Cherstvy A, Ingebrandt S, Offenhäusser A, Schöning MJ (2005) Possibilities and limitations of label-free detection of DNA hybridization with field-effect-based devices. Sensors Actuators B Chem 111:470–480

    Google Scholar 

  50. Li B-R, Chen C-W, Yang W-L, Lin T-Y, Pan C-Y, Chen Y-T (2013) Biomolecular recognition with a sensitivity-enhanced nanowire transistor biosensor. Biosens Bioelectron 45:252–259

    CAS  PubMed  Google Scholar 

  51. Noor MO, Krull UJ (2014) Silicon nanowires as field-effect transducers for biosensor development: a review. Anal Chim Acta 825:1–25

    CAS  PubMed  Google Scholar 

  52. Gao A, Lu N, Dai P, Li T, Pei H, Gao X, Gong Y, Wang Y, Fan C (2011) Silicon-nanowire-based CMOS-compatible field-effect transistor nanosensors for ultrasensitive electrical detection of nucleic acids. Nano Lett 11(9):3974–3978

    CAS  PubMed  Google Scholar 

  53. Chiang PL, Chou TC, Wu TH, Li CC, Liao CD, Lin JY, Tsai MH, Tsai CC, Sun CJ, Wang CH (2012) Nanowire transistor-based ultrasensitive virus detection with reversible surface functionalization. Chem Asian J 7(9):2073–2079

    CAS  PubMed  Google Scholar 

  54. Liu Y-CC, Rieben N, Iversen L, Sørensen BS, Park J, Nygård J, Martinez KL (2010) Specific and reversible immobilization of histidine-tagged proteins on functionalized silicon nanowires. Nanotechnology 21(24):245105

    PubMed  Google Scholar 

  55. Zheng G, Patolsky F, Cui Y, Wang WU, Lieber CM (2005) Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat Biotechnol 23(10):1294–1301. https://doi.org/10.1038/nbt1138

    Article  CAS  PubMed  Google Scholar 

  56. Ciriminna R, Zhang N, Yang MQ, Meneguzzo F, Xu YJ, Pagliaro M (2015) Commercialization of graphene-based technologies: a critical insight. Chem Commun (Camb) 51(33):7090–7095. https://doi.org/10.1039/c5cc01411e

    Article  CAS  Google Scholar 

  57. Lee HC, Liu W-W, Chai S-P, Mohamed AR, Aziz A, Khe C-S, Hidayah NM, Hashim U (2017) Review of the synthesis, transfer, characterization and growth mechanisms of single and multilayer graphene. RSC Adv 7(26):15644–15693. https://doi.org/10.1039/C7RA00392G

    Article  CAS  Google Scholar 

  58. Chen M, Haddon RC, Yan R, Bekyarova E (2017) Advances in transferring chemical vapour deposition graphene: a review. Mater Horiz 4(6):1054–1063. https://doi.org/10.1039/C7MH00485K

    Article  CAS  Google Scholar 

  59. Yan F, Zhang M, Li J (2014) Solution-gated graphene transistors for chemical and biological sensors. Adv Healthc Mater 3(3):313–331. https://doi.org/10.1002/adhm.201300221

    Article  CAS  PubMed  Google Scholar 

  60. Zhang T, Liu J, Wang C, Leng X, **ao Y, Fu L (2017) Synthesis of graphene and related two-dimensional materials for bioelectronics devices. Biosens Bioelectron 89(Pt 1):28–42. https://doi.org/10.1016/j.bios.2016.06.072

    Article  CAS  PubMed  Google Scholar 

  61. Andronescu C, Schuhmann W (2017) Graphene-based field effect transistors as biosensors. Curr Opin Electroche 3(1):11–17. https://doi.org/10.1016/j.coelec.2017.03.002

    Article  CAS  Google Scholar 

  62. Kaisti M (2017) Detection principles of biological and chemical FET sensors. Biosens Bioelectron 98:437–448. https://doi.org/10.1016/j.bios.2017.07.010

    Article  CAS  PubMed  Google Scholar 

  63. Georgakilas V, Tiwari JN, Kemp KC, Perman JA, Bourlinos AB, Kim KS, Zboril R (2016) Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications. Chem Rev 116(9):5464–5519. https://doi.org/10.1021/acs.chemrev.5b00620

    Article  CAS  PubMed  Google Scholar 

  64. Hwang MT, Landon PB, Lee J, Choi D, Mo AH, Glinsky G, Lal R (2016) Highly specific SNP detection using 2D graphene electronics and DNA strand displacement. Proc Natl Acad Sci U S A 113(26):7088–7093. https://doi.org/10.1073/pnas.1603753113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Xu SC, Zhan J, Man BY, Jiang SZ, Yue WW, Gao SB, Guo CG, Liu HP, Li ZH, Wang JH, Zhou YQ (2017) Real-time reliable determination of binding kinetics of DNA hybridization using a multi-channel graphene biosensor. Nat Commun:8–14902. https://doi.org/10.1038/Ncomms14902

  66. Brown E, Zhang W-D, Viveros L, Neff D, Green N, Norton M, Pham P, Burke P (2015) Sensing of DNA by graphene-on-silicon FET structures at DC and 101 GHz. Sens Biosensing Res 5:19–23. https://doi.org/10.1016/j.sbsr.2015.05.002

    Article  Google Scholar 

  67. Cai BJ, Huang L, Zhang H, Sun ZY, Zhang ZY, Zhang GJ (2015) Gold nanoparticles-decorated graphene field-effect transistor biosensor for femtomolar MicroRNA detection. Biosens Bioelectron 74:329–334. https://doi.org/10.1016/j.bios.2015.06.068

    Article  CAS  PubMed  Google Scholar 

  68. Islam K, Suhail A, Pan GH (2017) A label-free and ultrasensitive Immunosensor for detection of human chorionic gonadotrophin based on graphene FETs. Biosensors-Basel 7(3):27. https://doi.org/10.3390/Bios7030027

    Article  PubMed Central  Google Scholar 

  69. ** X, Zhang H, Li Y-T, **ao M-M, Zhang Z-L, Pang D-W, Wong G, Zhang Z-Y, Zhang G-J (2019) A field effect transistor modified with reduced graphene oxide for immunodetection of Ebola virus. Microchim Acta 186(4):223. https://doi.org/10.1007/s00604-019-3256-5

    Article  CAS  Google Scholar 

  70. Zhang M, Liao C, Mak CH, You P, Mak CL, Yan F (2015) Highly sensitive glucose sensors based on enzyme-modified whole-graphene solution-gated transistors. Sci Rep 5. https://doi.org/10.1038/srep08311

  71. Zhang M, Liao C, Yao Y, Liu Z, Gong F, Yan F (2014) High-performance dopamine sensors based on whole-graphene solution-gated transistors. Adv Funct Mater 24(7):978–985. https://doi.org/10.1002/adfm.201302359

    Article  CAS  Google Scholar 

  72. Lin Z, McCreary A, Briggs N, Subramanian S, Zhang KH, Sun YF, Li XF, Borys NJ, Yuan HT, Fullerton-Shirey SK, Chernikov A, Zhao H, McDonnell S, Lindenberg AM, **ao K, LeRoy BJ, Drndic M, Hwang JCM, Park J, Chhowalla M, Schaak RE, Javey A, Hersam MC, Robinson J, Terrones M (2016) 2D materials advances: from large scale synthesis and controlled heterostructures to improved characterization techniques, defects and applications. 2d Mater 3(4):042001. https://doi.org/10.1088/2053-1583/3/4/042001

    Article  CAS  Google Scholar 

  73. Yang G, Zhu C, Du D, Zhu J, Lin Y (2015) Graphene-like two-dimensional layered nanomaterials: applications in biosensors and nanomedicine. Nanoscale 7(34):14217–14231. https://doi.org/10.1039/c5nr03398e

    Article  CAS  PubMed  Google Scholar 

  74. Choi W, Choudhary N, Han GH, Park J, Akinwande D, Lee YH (2017) Recent development of two-dimensional transition metal dichalcogenides and their applications. Mater Today 20(3):116–130. https://doi.org/10.1016/j.mattod.2016.10.002

    Article  CAS  Google Scholar 

  75. Chhowalla M, Jena D, Zhang H (2016) Two-dimensional semiconductors for transistors. Nat Rev Mater 1(11):16052. https://doi.org/10.1038/Natrevmats2016.52

    Article  CAS  Google Scholar 

  76. Li X, Shan J, Zhang W, Su S, Yuwen L, Wang L (2017) Recent advances in synthesis and biomedical applications of two-dimensional transition metal dichalcogenide nanosheets. Small 13(5). https://doi.org/10.1002/smll.201602660

  77. Gan X, Zhao H, Quan X (2017) Two-dimensional MoS2: a promising building block for biosensors. Biosens Bioelectron 89(Pt 1):56–71. https://doi.org/10.1016/j.bios.2016.03.042

    Article  CAS  PubMed  Google Scholar 

  78. Zhang W, Zhang P, Su Z, Wei G (2015) Synthesis and sensor applications of MoS2-based nanocomposites. Nanoscale 7(44):18364–18378. https://doi.org/10.1039/c5nr06121k

    Article  CAS  PubMed  Google Scholar 

  79. Liu N, Baek J, Kim SM, Hong S, Hong YK, Kim YS, Kim HS, Kim S, Park J (2017) Improving the stability of high-performance multilayer MoS2 field-effect transistors. ACS Appl Mater Interfaces 9(49):42943–42950. https://doi.org/10.1021/acsami.7b16670

    Article  CAS  PubMed  Google Scholar 

  80. Shan J, Li J, Chu X, Xu M, ** F, Wang X, Ma L, Fang X, Wei Z, Wang X (2018) High sensitivity glucose detection at extremely low concentrations using a MoS 2-based field-effect transistor. RSC Adv 8(15):7942–7948. https://doi.org/10.1039/C7RA13614E

    Article  CAS  Google Scholar 

  81. Mei J, Li YT, Zhang H, **ao MM, Ning Y, Zhang ZY, Zhang GJ (2018) Molybdenum disulfide field-effect transistor biosensor for ultrasensitive detection of DNA by employing morpholino as probe. Biosens Bioelectron 110:71–77. https://doi.org/10.1016/j.bios.2018.03.043

    Article  CAS  PubMed  Google Scholar 

  82. Majd SM, Salimi A, Ghasemi F (2018) An ultrasensitive detection of miRNA-155 in breast cancer via direct hybridization assay using two-dimensional molybdenum disulfide field-effect transistor biosensor. Biosens Bioelectron 105:6–13. https://doi.org/10.1016/j.bios.2018.01.009

    Article  CAS  PubMed  Google Scholar 

  83. Wang L, Wang Y, Wong JI, Palacios T, Kong J, Yang HY (2014) Functionalized MoS(2) nanosheet-based field-effect biosensor for label-free sensitive detection of cancer marker proteins in solution. Small 10(6):1101–1105. https://doi.org/10.1002/smll.201302081

    Article  CAS  PubMed  Google Scholar 

  84. Park H, Han G, Lee SW, Lee H, Jeong SH, Naqi M, AlMutairi A, Kim YJ, Lee J, Kim WJ, Kim S, Yoon Y, Yoo G (2017) Label-free and recalibrated multilayer MoS2 biosensor for point-of-care diagnostics. ACS Appl Mater Interfaces 9(50):43490–43497. https://doi.org/10.1021/acsami.7b14479

    Article  CAS  PubMed  Google Scholar 

  85. Zhai TY, Fang XS, Liao MY, Xu XJ, Zeng HB, Yoshio B, Golberg D (2009) A comprehensive review of one-dimensional metal-oxide nanostructure photodetectors. Sensors 9(8):6504–6529. https://doi.org/10.3390/s90806504

    Article  CAS  PubMed  Google Scholar 

  86. Hu Z, **ao X, ** H, Li T, Chen M, Liang Z, Guo Z, Li J, Wan J, Huang L (2017) Rapid mass production of two-dimensional metal oxides and hydroxides via the molten salts method. Nat Commun 8:15630. https://doi.org/10.1038/ncomms15630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Chen HJ, Rim YS, Wang IC, Li C, Zhu BW, Sun M, Goorsky MS, He XM, Yang Y (2017) Quasi-two-dimensional metal oxide semiconductors based ultrasensitive potentiometric biosensors. ACS Nano 11(5):4710–4718. https://doi.org/10.1021/acsnano.7b00628

    Article  CAS  PubMed  Google Scholar 

  88. Mei J, Liao T, Kou L, Sun Z (2017) Two-dimensional metal oxide nanomaterials for next-generation rechargeable batteries. Adv Mater 29(48):1700176. https://doi.org/10.1002/adma.201700176

    Article  CAS  Google Scholar 

  89. Afaah A, Asib N, Aadila A, Eswar K, Mahmud M, Alrokayan SA, Khan HA, Mohamed R, Rusop M, Khusaimi Z (2015) The effect of different molarities of precursor Zn (NO3) 2.6 H2O to the growth of ZnO by solution-immersion deposited on ZnO seeded template. IOP Conference Series: Materials Science and Engineering 83(1):012007

  90. Miao FJ, Lu XX, Tao BR, Li R, Chu PK (2016) Glucose oxidase immobilization platform based on ZnO nanowires supported by silicon nanowires for glucose biosensing. Microelectron Eng 149:153–158. https://doi.org/10.1016/j.mee.2015.10.011

    Article  CAS  Google Scholar 

  91. Modepalli V, ** M-J, Park J, Jo J, Kim J-H, Baik JM, Seo C, Kim J, Yoo J-W (2016) Gate-tunable spin exchange interactions and inversion of magnetoresistance in single ferromagnetic ZnO nanowires. ACS Nano 10(4):4618–4626. https://doi.org/10.1021/acsnano.6b00921

    Article  CAS  PubMed  Google Scholar 

  92. Ahn MS, Ahmad R, Bhat KS, Yoo JY, Mahmoudi T, Hahn YB (2018) Fabrication of a solution-gated transistor based on valinomycin modified iron oxide nanoparticles decorated zinc oxide nanorods for potassium detection. J Colloid Interface Sci 518:277–283. https://doi.org/10.1016/j.jcis.2018.02.041

    Article  CAS  PubMed  Google Scholar 

  93. J-i H (2016) Fundamental properties of one-dimensional zinc oxide nanomaterials and implementations in various detection modes of enhanced biosensing. Annu Rev Phys Chem 67:691–717

    Google Scholar 

  94. Hong WK, Yoon J, Lee T (2015) Hydrogen plasma-mediated modification of the electrical transport properties of ZnO nanowire field effect transistors. Nanotechnology 26(12):125202. https://doi.org/10.1088/0957-4484/26/12/125202

    Article  CAS  PubMed  Google Scholar 

  95. Ahmad R, Ahn MS, Hahn YB (2017) ZnO nanorods array based field-effect transistor biosensor for phosphate detection. J Colloid Interface Sci 498:292–297. https://doi.org/10.1016/j.jcis.2017.03.069

    Article  CAS  PubMed  Google Scholar 

  96. Su M, Yang ZY, Liao L, Zou XM, Ho JC, Wang JL, Wang JL, Hu WD, **ao XH, Jiang CZ, Liu CS, Guo TL (2016) Side-gated In2O3 nanowire ferroelectric FETs for high-performance nonvolatile memory applications. Adv Sci 3(9). https://doi.org/10.1002/Advs.201600078

  97. Kong XY, Wang ZL (2003) Structures of indium oxide nanobelts. Solid State Commun 128(1):1–4. https://doi.org/10.1016/S0038-1098(03)00650-1

    Article  CAS  Google Scholar 

  98. Liu J, Li S, Zhang B, Wang YL, Gao Y, Liang XS, Wang Y, Lu GY (2017) Flower-like In2O3 modified by reduced graphene oxide sheets serving as a highly sensitive gas sensor for trace NO2 detection. J Colloid Interface Sci 504:206–213. https://doi.org/10.1016/j.jcis.2017.05.053

    Article  CAS  PubMed  Google Scholar 

  99. Vyas S, Tiwary R, Shubham K, Chakrabarti P (2015) Study the target effect on the structural, surface and optical properties of TiO2 thin film fabricated by RF sputtering method. Superlattice Microst 80:215–221. https://doi.org/10.1016/j.spmi.2014.10.029

    Article  CAS  Google Scholar 

  100. Lee H, Song MY, Jurng J, Park YK (2011) The synthesis and coating process of TiO2 nanoparticles using CVD process. Powder Technol 214(1):64–68. https://doi.org/10.1016/j.powtec.2011.07.036

    Article  CAS  Google Scholar 

  101. Conde-Gallardo A, Guerreri M, Castillo N, Soto AB, Fragoso R, Cabanas-Moreno JG (2005) TiO2 anatase thin films deposited by spray pyrolysis of an aerosol of titanium diisopropoxide. Thin Solid Films 473(1):68–73. https://doi.org/10.1016/j.tsf.2004.07.010

    Article  CAS  Google Scholar 

  102. Liu WL, Lee PF, Dai JY, Wang J, Chan HLW, Choy CL, Song ZT, Feng SL (2005) Self-organized Ge nanocrystals embedded in HfAlO fabricated by pulsed-laser deposition and application to floating gate memory. Appl Phys Lett 86(1):013110. https://doi.org/10.1063/1.1846154

    Article  CAS  Google Scholar 

  103. Mosca M, Macaluso R, Randazzo G, Di Bella M, Caruso F, Cali C, Di Franco F, Santamaria M, Di Quarto F (2014) Anodized Ti-Si alloy as gate oxide of electrochemically-fabricated organic field-effect transistors. ECS Solid State Lett 3(1):P7–P9. https://doi.org/10.1149/2.007401ssl

    Article  CAS  Google Scholar 

  104. Adzhri R, Arshad MM, Fathil M, Hashim U, Ruslinda A, Ayub R, Gopinath SC, Voon C, Foo K, Nuzaihan M (2015) Characteristics of TiO2 thin film with back-gate biasing for FET-based biosensors application. IEEE Regional Symposium on Micro and Nanoelectronics (RSM), pp 1–4

  105. Bai J, Zhou BX (2014) Titanium dioxide nanomaterials for sensor applications. Chem Rev 114(19):10131–10176. https://doi.org/10.1021/cr400625j

    Article  CAS  PubMed  Google Scholar 

  106. Syedmoradi L, Gomez FA (2017) Paper-based point-of-care testing in disease diagnostics. Bioanalysis 9(11):841–843. https://doi.org/10.4155/bio-2017-0080

    Article  CAS  PubMed  Google Scholar 

  107. Van Den Berg A, Craighead HG, Yang P (2010) From microfluidic applications to nanofluidic phenomena. Chem Soc Rev 39(3):899–900. https://doi.org/10.1039/C001349H

    Article  PubMed  Google Scholar 

  108. Prakash S, Pinti M (1967) Bhushan B (2012) theory, fabrication and applications of microfluidic and nanofluidic biosensors. Phil Trans R Soc A 370:2269–2303

    Google Scholar 

  109. He RX, Lin P, Liu ZK, Zhu HW, Zhao XZ, Chan HL, Yan F (2012) Solution-gated graphene field effect transistors integrated in microfluidic systems and used for flow velocity detection. Nano Lett 12(3):1404–1409

    CAS  PubMed  Google Scholar 

  110. Huang Y-W, Wu C-S, Chuang C-K, Pang S-T, Pan T-M, Yang Y-S, Ko F-H (2013) Real-time and label-free detection of the prostate-specific antigen in human serum by a polycrystalline silicon nanowire field-effect transistor biosensor. Anal Chem 85(16):7912–7918

    CAS  PubMed  Google Scholar 

  111. Härting M, Zhang J, Gamota D, Britton D (2009) Fully printed silicon field effect transistors. Appl Phys Lett 94(19):193509

    Google Scholar 

  112. Fortunato E, Correia N, Barquinha P, Pereira L, Gonçalves G, Martins R (2008) High-performance flexible hybrid field-effect transistors based on cellulose fiber paper. IEEE Electron Device Lett 29(9):988–990

    Google Scholar 

  113. Trnovec B, Stanel M, Hahn U, Hübler A, Kempa H, Sangl R, Forster M (2009) Coated paper for printed electronics. Professional Papermaking 1:48–51

    Google Scholar 

  114. Huang W, Diallo AK, Dailey JL, Besar K, Katz HE (2015) Electrochemical processes and mechanistic aspects of field-effect sensors for biomolecules. J Mater Chem C 3(25):6445–6470

    CAS  Google Scholar 

  115. Organization WH (2006) Neurological disorders: public health challenges. World Health Organization. https://apps.who.int/iris/handle/10665/43605

  116. Kergoat L, Piro B, Simon DT, Pham MC, Noël V, Berggren M (2014) Detection of glutamate and acetylcholine with organic electrochemical transistors based on conducting polymer/platinum nanoparticle composites. Adv Mater 26(32):5658–5664

    CAS  PubMed  Google Scholar 

  117. Mirzaei M, Sawan M (2014) Microelectronics-based biosensors dedicated to the detection of neurotransmitters: a review. Sensors 14(10):17981–18008

    CAS  PubMed  Google Scholar 

  118. Hess LH, Lyuleeva A, Blaschke BM, Sachsenhauser M, Seifert M, Garrido JA, Deubel F (2014) Graphene transistors with multifunctional polymer brushes for biosensing applications. ACS Appl Mater Interfaces 6(12):9705–9710. https://doi.org/10.1021/am502112x

    Article  CAS  PubMed  Google Scholar 

  119. Wightman RM, May LJ, Michael AC (1988) Detection of dopamine dynamics in the brain. Anal Chem 60(13):769A–793A

    CAS  PubMed  Google Scholar 

  120. Li B-R, Hsieh Y-J, Chen Y-X, Chung Y-T, Pan C-Y, Chen Y-T (2013) An ultrasensitive nanowire-transistor biosensor for detecting dopamine release from living PC12 cells under hypoxic stimulation. J Am Chem Soc 135(43):16034–16037

    CAS  PubMed  Google Scholar 

  121. Lin C-H, Hsiao C-Y, Hung C-H, Lo Y-R, Lee C-C, Su C-J, Lin H-C, Ko F-H, Huang T-Y, Yang Y-S (2008) Ultrasensitive detection of dopamine using a polysilicon nanowire field-effect transistor. Chem Commun 44:5749–5751

    Google Scholar 

  122. Banerjee S, Hsieh YJ, Liu CR, Yeh NH, Hung HH, Lai YS, Chou AC, Chen YT, Pan CY (2016) Differential releases of dopamine and neuropeptide Y from histamine-stimulated PC12 cells detected by an aptamer-modified nanowire transistor. Small 12(40):5524–5529

    CAS  PubMed  Google Scholar 

  123. Kim J, Rim YS, Chen H, Cao HH, Nakatsuka N, Hinton HL, Zhao C, Andrews AM, Yang Y, Weiss PS (2015) Fabrication of high-performance ultrathin In2O3 film field-effect transistors and biosensors using chemical lift-off lithography. ACS Nano 9(4):4572–4582

    CAS  PubMed  Google Scholar 

  124. Kojima H, Nakatsubo N, Kikuchi K, Kawahara S, Kirino Y, Nagoshi H, Hirata Y, Nagano T (1998) Detection and imaging of nitric oxide with novel fluorescent indicators: diaminofluoresceins. Anal Chem 70(13):2446–2453

    CAS  PubMed  Google Scholar 

  125. Harris E (2014) Biochemical Facts Behind The Definition And Properties of metabolites. Ebook, 1st edn. US Food and Drug Administration. Accessed November

  126. Tian K, Prestgard M, Tiwari A (2014) A review of recent advances in nonenzymatic glucose sensors. Mater Sci Eng C 41:100–118

    CAS  Google Scholar 

  127. Scognamiglio V (2013) Nanotechnology in glucose monitoring: advances and challenges in the last 10 years. Biosens Bioelectron 47:12–25

    CAS  PubMed  Google Scholar 

  128. Bhat KS, Ahmad R, Yoo J-Y, Hahn Y-B (2017) Nozzle-jet printed flexible field-effect transistor biosensor for high performance glucose detection. J Colloid Interface Sci 506:188–196

    CAS  PubMed  Google Scholar 

  129. Ahmad R, Hahn Y-B (2018) Nonenzymatic flexible field-effect transistor based glucose sensor fabricated using NiO quantum dots modified ZnO nanorods. J Colloid Interface Sci 512:21–28

    PubMed  Google Scholar 

  130. Ahmad R, Tripathy N, Park J-H, Hahn Y-B (2015) A comprehensive biosensor integrated with a ZnO nanorod FET array for selective detection of glucose, cholesterol and urea. Chem Commun 51(60):11968–11971

    CAS  Google Scholar 

  131. Daneshpour M, Karimi B, Omidfar K (2018) Simultaneous detection of gastric cancer-involved miR-106a and let-7a through a dual-signal-marked electrochemical nanobiosensor. Biosens Bioelectron 109:197–205

    CAS  PubMed  Google Scholar 

  132. Khodaei R, Ahmady A, Khoshfetrat SM, Kashanian S, Tavangar SM, Omidfar K (2019) Voltammetric immunosensor for E-cadherin promoter DNA methylation using a Fe 3 O 4-citric acid nanocomposite and a screen-printed carbon electrode modified with poly (vinyl alcohol) and reduced graphene oxide. Microchim Acta 186(3):170. https://doi.org/10.1007/s00604-019-3234-y

    Article  CAS  Google Scholar 

  133. Green NS, Norton ML (2015) Interactions of DNA with graphene and sensing applications of graphene field-effect transistor devices: a review. Anal Chim Acta 853:127–142

    CAS  PubMed  Google Scholar 

  134. Loan PTK, Wu D, Ye C, Li X, Tra VT, Wei Q, Fu L, Yu A, Li LJ, Lin CT (2018) Hall effect biosensors with ultraclean graphene film for improved sensitivity of label-free DNA detection. Biosens Bioelectron 99:85–91. https://doi.org/10.1016/j.bios.2017.07.045

    Article  CAS  PubMed  Google Scholar 

  135. Xu S, Jiang S, Zhang C, Yue W, Zou Y, Wang G, Liu H, Zhang X, Li M, Zhu Z (2018) Ultrasensitive label-free detection of DNA hybridization by sapphire-based graphene field-effect transistor biosensor. Appl Surf Sci 427:1114–1119

    CAS  Google Scholar 

  136. Lee D-W, Lee J, Sohn IY, Kim B-Y, Son YM, Bark H, Jung J, Choi M, Kim TH, Lee C (2015) Field-effect transistor with a chemically synthesized MoS2 sensing channel for label-free and highly sensitive electrical detection of DNA hybridization. Nano Res 8(7):2340–2350

    CAS  Google Scholar 

  137. He J, Zhu J, Gong C, Qi J, **ao H, Jiang B, Zhao Y (2015) Label-free direct detection of miRNAs with poly-silicon nanowire biosensors. PLoS One 10(12):e0145160

    PubMed  PubMed Central  Google Scholar 

  138. Peng J, He T, Sun YL, Liu YW, Cao QQ, Wang Q, Tang H (2018) An organic electrochemical transistor for determination of microRNA21 using gold nanoparticles and a capture DNA probe. Microchim Acta 185(9):408. https://doi.org/10.1007/S00604-018-2944-X

    Article  Google Scholar 

  139. Borrebaeck CA (2017) Precision diagnostics: moving towards protein biomarker signatures of clinical utility in cancer. Nat Rev Cancer 17(3):199–204

    CAS  PubMed  Google Scholar 

  140. Paknejad M, Rasaee M, Tehrani FK, Kashanian S, Mohagheghi M, Omidfar K, Bazl MR (2003) Production of monoclonal antibody, PR81, recognizing the tandem repeat region of MUC1 mucin. Hybridoma and hybridomics 22(3):153–158

    CAS  PubMed  Google Scholar 

  141. Leca-Bouvier B, Blum LJ (2005) Biosensors for protein detection: a review. Anal Lett 38(10):1491–1517

    CAS  Google Scholar 

  142. Strehlitz B, Nikolaus N, Stoltenburg R (2008) Protein detection with aptamer biosensors. Sensors 8(7):4296–4307

    CAS  PubMed  Google Scholar 

  143. Holzinger M, Le Goff A, Cosnier S (2017) Synergetic effects of combined nanomaterials for biosensing applications. Sensors 17(5):1010. https://doi.org/10.3390/S17051010

    Article  Google Scholar 

  144. Omidfar K, Darzianiazizi M, Ahmadi A, Daneshpour M, Shirazi H (2015) A high sensitive electrochemical nanoimmunosensor based on Fe3O4/TMC/Au nanocomposite and PT-modified electrode for the detection of cancer biomarker epidermal growth factor receptor. Sensors Actuators B Chem 220:1311–1319

    CAS  Google Scholar 

  145. Omidfar K, Moinfar Z, Sohi AN, Tavangar SM, Haghpanah V, Heshmat R, Kashanian S, Larijani B (2009) Expression of EGFRvIII in thyroid carcinoma: immunohistochemical study by camel antibodies. Immunol Investig 38(2):165–180

    CAS  Google Scholar 

  146. Sadana A, Sadana N (2014) Biomarkers and biosensors: detection and binding to biosensor surfaces and biomarkers applications. Detection of Cancer Biomarkers on Biosensor Surfaces, Newnes, pp 43–108

  147. Kelloff GJ, Coffey DS, Chabner BA, Dicker AP, Guyton KZ, Nisen PD, Soule HR, D’Amico AV (2004) Prostate-specific antigen doubling time as a surrogate marker for evaluation of oncologic drugs to treat prostate cancer. Clin Cancer Res 10(11):3927–3933

    CAS  PubMed  Google Scholar 

  148. Miller KD, Siegel RL, Lin CC, Mariotto AB, Kramer JL, Rowland JH, Stein KD, Alteri R, Jemal A (2016) Cancer treatment and survivorship statistics, 2016. CA Cancer J Clin 66(4):271–289

    PubMed  Google Scholar 

  149. Rani D, Pachauri V, Madaboosi N, Jolly P, Vu X-T, Estrela P, Chu V, Conde JP, Ingebrandt S (2018) Top-down fabricated silicon nanowire arrays for field-effect detection of prostate-specific antigen. ACS Omega 3(8):8471–8482

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Presnova G, Presnov D, Krupenin V, Grigorenko V, Trifonov A, Andreeva I, Ignatenko O, Egorov A, Rubtsova M (2017) Biosensor based on a silicon nanowire field-effect transistor functionalized by gold nanoparticles for the highly sensitive determination of prostate specific antigen. Biosens Bioelectron 88:283–289

    CAS  PubMed  Google Scholar 

  151. Yoo G, Park H, Kim M, Song WG, Jeong S, Kim MH, Lee H, Lee SW, Hong YK, Lee MG (2017) Real-time electrical detection of epidermal skin MoS 2 biosensor for point-of-care diagnostics. Nano Res 10(3):767–775

    CAS  Google Scholar 

  152. Zhou L, Mao H, Wu C, Tang L, Wu Z, Sun H, Zhang H, Zhou H, Jia C, ** Q (2017) Label-free graphene biosensor targeting cancer molecules based on non-covalent modification. Biosens Bioelectron 87:701–707

    CAS  PubMed  Google Scholar 

  153. Zhu K, Zhang Y, Li Z, Zhou F, Feng K, Dou H, Wang T (2015) Simultaneous detection of α-fetoprotein and carcinoembryonic antigen based on Si nanowire field-effect transistors. Sensors 15(8):19225–19236

    CAS  PubMed  Google Scholar 

  154. Goodfellow N, Morlet J, Singh S, Sabokbar A, Hutchings A, Sharma V, Vaskova J, Masters S, Zarei A, Luqmani R (2017) Is vascular endothelial growth factor a useful biomarker in giant cell arteritis? RMD Open 3(1):e000353

    PubMed  PubMed Central  Google Scholar 

  155. Shi X, ** L, Weng D, Chen G, Song X, Wu P, Wang B, Wei J, Wang S, Zhou J (2008) Clinicopathological significance of VEGF-C, VEGFR-3 and cyclooxygenase-2 in early-stage cervical Cancer. Int J Biomed Sci 4(1):58

    PubMed  PubMed Central  Google Scholar 

  156. Holmes DI, Zachary I (2005) The vascular endothelial growth factor (VEGF) family: angiogenic factors in health and disease. Genome Biol 6(2):209

    PubMed  PubMed Central  Google Scholar 

  157. Chen H-C, Qiu J-T, Yang F-L, Liu Y-C, Chen M-C, Tsai R-Y, Yang H-W, Lin C-Y, Lin C-C, Wu T-S (2014) Magnetic-composite-modified polycrystalline silicon nanowire field-effect transistor for vascular endothelial growth factor detection and cancer diagnosis. Anal Chem 86(19):9443–9450

    CAS  PubMed  Google Scholar 

  158. Teixeira S, Burwell G, Castaing A, Gonzalez D, Conlan R, Guy O (2014) Epitaxial graphene immunosensor for human chorionic gonadotropin. Sensors Actuators B Chem 190:723–729

    CAS  Google Scholar 

  159. Kozłowski L, Zakrzewska I, Tokajuk P, Wojtukiewicz M (2003) Concentration of interleukin-6 (IL-6), interleukin-8 (IL-8) and interleukin-10 (IL-10) in blood serum of breast cancer patients. Rocz Akad Med Bialymst 48(1995):82–84

    PubMed  Google Scholar 

  160. Lee SJ, Li Z, Sherman B, Foster CS (1993) Serum levels of tumor necrosis factor-alpha and interleukin-6 in ocular cicatricial pemphigoid. Invest Ophthalmol Vis Sci 34(13):3522–3525

    CAS  PubMed  Google Scholar 

  161. Huang J, Chen H, Niu W, Fam DW, Palaniappan A, Larisika M, Faulkner SH, Nowak C, Nimmo MA, Liedberg B (2015) Highly manufacturable graphene oxide biosensor for sensitive Interleukin-6 detection. RSC Adv 5(49):39245–39251

    CAS  Google Scholar 

  162. Zhang Y, Chen R, Xu L, Ning Y, **e S, Zhang G-J (2015) Silicon nanowire biosensor for highly sensitive and multiplexed detection of oral squamous cell carcinoma biomarkers in saliva. Anal Sci 31(2):73–78

    PubMed  Google Scholar 

  163. May L, Viguet H, Kenney J, Ida N, Allison A, Sehgal P (1992) High levels of" complexed" interleukin-6 in human blood. J Biol Chem 267(27):19698–19704

    CAS  PubMed  Google Scholar 

  164. Zhou F, Li Z, Bao Z, Feng K, Zhang Y, Wang T (2015) Highly sensitive, label-free and real-time detection of alpha-fetoprotein using a silicon nanowire biosensor. Scand J Clin Lab Invest 75(7):578–584

    CAS  PubMed  Google Scholar 

  165. AlSalloom AAM (2016) An update of biochemical markers of hepatocellular carcinoma. Int J Health Sci-Ijh 10(1):121–136

    Google Scholar 

  166. Mizejewski GJ (2007) Physiology of alpha-fetoprotein as a biomarker for perinatal distress: relevance to adverse pregnancy outcome. Exp Biol Med 232(8):993–1004. https://doi.org/10.3181/0612-mr-291

    Article  CAS  Google Scholar 

  167. Kim K, Park C, Kwon D, Kim D, Meyyappan M, Jeon S, Lee J-S (2016) Silicon nanowire biosensors for detection of cardiac troponin I (cTnI) with high sensitivity. Biosens Bioelectron 77:695–701

    CAS  PubMed  Google Scholar 

  168. Arshad M, Adzhri R, Fathil M, Gopinath SC (2018) Field-effect transistor-integration with TiO2 nanoparticles for sensing of cardiac troponin I biomarker. J Nanosci Nanotechnol 18(8):5283–5291

    CAS  PubMed  Google Scholar 

  169. Fathil M, Arshad MM, Ruslinda A, Gopinath SC, Nuzaihan Md Nor MNM, Adzhri R, Hashim U, Lam H (2017) Substrate-gate coupling in ZnO-FET biosensor for cardiac troponin I detection. Sensors Actuators B Chem 242:1142–1154

    CAS  Google Scholar 

  170. Ishaq S, Afaq S, Kaur H, Bhaskar N, Najeeb Q, Pandey R (2012) Brain natriuretic peptide (BNP): a diagnostic marker in congestive heart failure-induced acute dyspnea. Int J Med Public Health 2(4):20–23. https://doi.org/10.5530/ijmedph.2.4.4

  171. Lei Y-M, **ao M-M, Li Y-T, Xu L, Zhang H, Zhang Z-Y, Zhang G-J (2017) Detection of heart failure-related biomarker in whole blood with graphene field effect transistor biosensor. Biosens Bioelectron 91:1–7

    CAS  PubMed  Google Scholar 

  172. Wenga G, Jacques E, Salaün A-C, Rogel R, Pichon L, Geneste F (2013) Step-gate polysilicon nanowires field effect transistor compatible with CMOS technology for label-free DNA biosensor. Biosens Bioelectron 40(1):141–146

    CAS  PubMed  Google Scholar 

  173. Lu N, Gao A, Dai P, Li T, Wang Y, Gao X, Song S, Fan C, Wang Y (2013) Ultra-sensitive nucleic acids detection with electrical nanosensors based on CMOS-compatible silicon nanowire field-effect transistors. Methods 63(3):212–218

    CAS  PubMed  Google Scholar 

  174. Gao A, Lu N, Wang Y, Dai P, Li T, Gao X, Wang Y, Fan C (2012) Enhanced sensing of nucleic acids with silicon nanowire field effect transistor biosensors. Nano Lett 12(10):5262–5268

    CAS  PubMed  Google Scholar 

  175. Puppo F, Doucey M-A, Moh TS, Pandraud G, Sarro PM, De Micheli G, Carrara S (2013) Femto-molar sensitive field effect transistor biosensors based on silicon nanowires and antibodies. In: SENSORS, 2013 IEEE. IEEE, pp 1–4

  176. Hakim MM, Lombardini M, Sun K, Giustiniano F, Roach PL, Davies DE, Howarth PH, de Planque MR, Morgan H, Ashburn P (2012) Thin film polycrystalline silicon nanowire biosensors. Nano Lett 12(4):1868–1872

    CAS  PubMed  Google Scholar 

  177. Pham VB, Pham XT, Phan TNK, Le TTT, Dang MC (2015) Facile fabrication of a silicon nanowire sensor by two size reduction steps for detection of alpha-fetoprotein biomarker of liver cancer. Adv Nat Sci Nanosci Nanotechnol 6(4):045001

    Google Scholar 

  178. Yang C-Y, Chiang H-C, Kuo C-J, Hsu C-W, Chan S-F, Lin Z-Y, Lin C-H, Chen Y-T (2018) Hepatocellular carcinoma diagnosis by detecting α-fucosidase with a silicon nanowire field-effect transistor biosensor. ECS J Solid State Sci Technol 7(7):Q3153–Q3158

    CAS  Google Scholar 

  179. Chen H-C, Chen Y-T, Tsai R-Y, Chen M-C, Chen S-L, **ao M-C, Chen C-L, Hua M-Y (2015) A sensitive and selective magnetic graphene composite-modified polycrystalline-silicon nanowire field-effect transistor for bladder cancer diagnosis. Biosens Bioelectron 66:198–207

    CAS  PubMed  Google Scholar 

  180. Shen S-H, Wang I-S, Cheng H, Lin C-T (2015) An enhancement of high-k/oxide stacked dielectric structure for silicon-based multi-nanowire biosensor in cardiac troponin I detection. Sensors Actuators B Chem 218:303–309

    CAS  Google Scholar 

  181. Kong T, Su R, Zhang B, Zhang Q, Cheng G (2012) CMOS-compatible, label-free silicon-nanowire biosensors to detect cardiac troponin I for acute myocardial infarction diagnosis. Biosens Bioelectron 34(1):267–272

    CAS  PubMed  Google Scholar 

  182. Liu Q, Aroonyadet N, Song Y, Wang X, Cao X, Liu Y, Cong S, Wu F, Thompson ME, Zhou C (2016) Highly sensitive and quick detection of acute myocardial infarction biomarkers using In2O3 nanoribbon biosensors fabricated using shadow masks. ACS Nano 10(11):10117–10125

    CAS  PubMed  Google Scholar 

  183. Li W, Geng X, Guo Y, Rong J, Gong Y, Wu L, Zhang X, Li P, Xu J, Cheng G (2011) Reduced graphene oxide electrically contacted graphene sensor for highly sensitive nitric oxide detection. ACS Nano 5(9):6955–6961

    CAS  PubMed  Google Scholar 

  184. ** J, Vishnubhotla R, Vrudhula A, Johnson AC (2016) Scalable production of high-sensitivity, label-free DNA biosensors based on back-gated graphene field effect transistors. ACS Nano 10(9):8700–8704

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Zheng C, Huang L, Zhang H, Sun Z, Zhang Z, Zhang G-J (2015) Fabrication of ultrasensitive field-effect transistor DNA biosensors by a directional transfer technique based on CVD-grown graphene. ACS Appl Mater Interfaces 7(31):16953–16959

    CAS  PubMed  Google Scholar 

  186. Gao ZL, **a H, Zauberman J, Tomaiuolo M, ** JL, Zhang QC, Ducos P, Ye HC, Wang S, Yang XP, Lubna F, Luo ZT, Ren L, Johnson ATC (2018) Detection of sub-fM DNA with target recycling and self-assembly amplification on graphene field-effect biosensors. Nano Lett 18(6):3509–3515. https://doi.org/10.1021/acs.nanolett.8b00572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Tian M, Xu SC, Zhang JY, Wang XX, Li ZH, Liu HL, Song RH, Yu ZH (2018) Wang JH (2018) RNA detection based on graphene field-effect transistor biosensor. Adv Cond Matter Phys. https://doi.org/10.1155/2018/8146765

  188. Kim D-J, Sohn IY, Jung J-H, Yoon OJ, Lee N-E, Park J-S (2013) Reduced graphene oxide field-effect transistor for label-free femtomolar protein detection. Biosens Bioelectron 41:621–626

    CAS  PubMed  Google Scholar 

  189. Haslam C, Damiati S, Whitley T, Davey P, Ifeachor E, Awan SA (2018) Label-free sensors based on graphene field-effect transistors for the detection of human chorionic gonadotropin cancer risk biomarker. Diagnostics 8(1):5

    PubMed Central  Google Scholar 

  190. Zhou L, Wang K, Sun H, Zhao S, Chen X, Qian D, Mao H, Zhao J (2019) Novel graphene biosensor based on the functionalization of multifunctional Nano-bovine serum albumin for the highly sensitive detection of Cancer biomarkers. Nanomicro Lett 11(1):20

    CAS  Google Scholar 

  191. Hao Z, Pan Y, Shao W, Lin Q, Zhao X (2019) Graphene-based fully integrated portable nanosensing system for on-line detection of cytokine biomarkers in saliva. Biosens Bioelectron 134:16–23

    CAS  PubMed  Google Scholar 

  192. Kim D, Oh H, Park W, Jeon D, Lim K, Kim H, Jang B, Song K (2018) Detection of alpha-fetoprotein in hepatocellular carcinoma patient plasma with graphene field-effect transistor. Sensors 18(11):4032

    Google Scholar 

  193. Munief W-M, Lu X, Teucke T, Wilhelm J, Britz A, Hempel F, Lanche R, Schwartz M, Law JKY, Grandthyll S (2019) Reduced graphene oxide biosensor platform for the detection of NT-proBNP biomarker in its clinical range. Biosens Bioelectron 126:136–142

    CAS  PubMed  Google Scholar 

  194. Kukkar M, Tuteja SK, Sharma AL, Kumar V, Paul AK, Kim K-H, Sabherwal P, Deep A (2016) A new electrolytic synthesis method for few-layered MoS2 nanosheets and their robust biointerfacing with reduced antibodies. ACS Appl Mater Interfaces 8(26):16555–16563

    CAS  PubMed  Google Scholar 

  195. Ryu B, Nam H, Oh B-R, Song Y, Chen P, Park Y, Wan W, Kurabayashi K, Liang X (2017) Cyclewise operation of printed MoS2 transistor biosensors for rapid biomolecule quantification at femtomolar levels. ACS Sensors 2(2):274–281

    CAS  PubMed  Google Scholar 

  196. Nam H, Oh B-R, Chen P, Yoon JS, Wi S, Chen M, Kurabayashi K, Liang X (2015) Two different device physics principles for operating MoS2 transistor biosensors with femtomolar-level detection limits. Appl Phys Lett 107(1):012105

    Google Scholar 

  197. Adzhri R, Arshad MM, Gopinath SC, Ruslinda A, Fathil M, Ibau C, Nuzaihan M (2017) Enhanced sensitivity mediated ambipolar conduction with p-type TiO2 anatase transducer for biomarker capturing. Sensors Actuators A Phys 259:57–67

    CAS  Google Scholar 

Download references

Acknowledgments

MN would like to acknowledge support from ARO awards: W911NF-11-1-0024 and W911NF-09-1-0218 NSF Cooperative Agreements Numbered EPS-1003907 and OIA-1458952; and support by the National Institute of General Medical Sciences of the National Institutes of Health under Award Number P20GM121299. The content is solely the responsibility of the authors and does not necessarily represent the official views of the ARO, NSF or NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kobra Omidfar.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Syedmoradi, L., Ahmadi, A., Norton, M.L. et al. A review on nanomaterial-based field effect transistor technology for biomarker detection. Microchim Acta 186, 739 (2019). https://doi.org/10.1007/s00604-019-3850-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3850-6

Keywords

Navigation