Log in

Fluorometric determination for ofloxacin by using an aptamer and SYBR Green I

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A fluorometric method is described for the determination of ofloxacin (OFL). It is based on the use of the fluorescent intercalator SYBR Green I (SG-I). The OFL-aptamer has G-quadruplex structures and can be recognized by SG-I. It results in strong fluorescence of SG-I. If OFL is present, OFL will bind to its aptamer to form stable complexes. This induces the despiralization of partial dsDNA regions, leads to changes in the structure of the aptamer. Thus, SG-I is released from the OFL-aptamer into solution. Hence, the fluorescence of SG-I drops. Fluorescence decreases linearly in the 1.1 to 200 nM OFL concentration range, and the limit of detection is 0.34 nM. The method shows good selectivity to much interference including analogues, hormones, pesticides. It is also effortless and fast with the times of measurement of <40 min. In addition, good recoveries of 91.3–119.0% were found for tap water, river water and artificial urine spiked with OFL with relative standard deviation (RSD) of ≤11.6%.

A sensitive fluorometric method is developed for ofloxacin (OFL) detection in aqueous samples based on the fluorescence intensity change of SYBR Green I (SG-I) with or without OFL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mitani K, Kataoka H (2006) Determination of fluoroquinolones in environmental waters by in-tube solid-phase microextraction coupled with liquid chromatography–tandem mass spectrometry. Anal Chim Acta 562(1):16–22

    Article  CAS  Google Scholar 

  2. Hooper DC, Wolfson JS (1985) The fluoroquinolones: pharmacology, clinical uses, and toxicities in humans. Antimicrob Agents Ch 28(5):716–721

    Article  CAS  Google Scholar 

  3. Chen T, Huang K, Chen J (2012) An electrochemical approach to simultaneous determination of acetaminophen and Ofloxacin. B Environ Contam Tox 89(6):1284–1288

    Article  CAS  Google Scholar 

  4. Wong A, Silva TA, Vicentini FC, Fatibello-Filho O (2016) Electrochemical sensor based on graphene oxide and ionic liquid for ofloxacin determination at nanomolar levels. Talanta 161(1):333–341

    Article  CAS  Google Scholar 

  5. Timofeeva I, Timofeev S, Moskvin L, Bulatov A (2017) A dispersive liquid-liquid microextraction using a switchable polarity dispersive solvent. Automated HPLC-FLD determination of ofloxacin in chicken meat. Anal Chim Acta 949(1):35–42

    Article  CAS  Google Scholar 

  6. Chan KP, Chu KO, Lai WW, Choy KW, Wang CC, Lam DS, Pang CP (2006) Determination of ofloxacin and moxifloxacin and their penetration in human aqueous and vitreous humor by using high-performance liquid chromatography fluorescence detection. Anal Biochem 353(1):30–36

    Article  CAS  Google Scholar 

  7. Sun H, He P, Lv Y, Liang S (2007) Effective separation and simultaneous determination of seven fluoroquinolones by capillary electrophoresis with diode-array detector. J Chromatogr B 852(1–2):145–151

    Article  CAS  Google Scholar 

  8. Wu F, Xu F, Chen L, Jiang B, Sun W, Wei X (2016) Cuprous oxide/nitrogen-doped graphene nanocomposites as electrochemical sensors for ofloxacin determination. CHEM Res Chinese U 32(3):468–473

    Article  CAS  Google Scholar 

  9. Pagani AP, Ibañez GA (2019) Analytical approach for the simultaneous determination of quinolones in edible animal products. Modeling pH–modulated fluorescence excitation–emission matrices four–way arrays. Talanta 192(15):52–60

    Article  CAS  Google Scholar 

  10. Wang X, Li Y, Li R, Yang H, Zhou B, Wang X, **e Y (2019) Comparison of chlorination behaviors between norfloxacin and ofloxacin: reaction kinetics, oxidation products and reaction pathways. Chemosphere 215:124–132

    Article  CAS  Google Scholar 

  11. Vakh C, Pochivalov A, Koronkiewicz S, Kalinowski S, Postnov V, Bulatov A (2019) A chemiluminescence method for screening of fluoroquinolones in milk samples based on a multi-pum** flow system. Food Chem 270(1):10–16

    Article  CAS  Google Scholar 

  12. Yan Z, Yi H, Wang L, Zhou X, Yan R, Zhang D, Wang S, Su L, Zhou S (2019) Fluorescent aptasensor for ofloxacin detection based on the aggregation of gold nanoparticles and its effect on quenching the fluorescence of rhodamine B. Spectrochim Acta A 221(5):117203

    Article  Google Scholar 

  13. Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346(6287):818–822

    Article  CAS  Google Scholar 

  14. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science (New York, NY) 249(4968):505–510

    Article  CAS  Google Scholar 

  15. Abraham KM, Roueinfar M, Ponce AT, Lussier ME, Benson DB, Hong KL (2018) In vitro selection and characterization of a single-stranded DNA aptamer against the herbicide atrazine. Acs Omega 3(10):13576–13583

    Article  CAS  Google Scholar 

  16. **ao S, Hu P, Li Y, Huang C, Huang T, **ao G (2009) Aptamer-mediated turn-on fluorescence assay for prion protein based on guanine quenched fluophor. Talanta 79(5):1283–1286

    Article  CAS  Google Scholar 

  17. Yu F, Li H, Sun W, Zhao Y, Xu D, He F (2019) Selection of aptamers against Lactoferrin based on silver enhanced and fluorescence-activated cell sorting. Talanta 193(1):110–117

    Article  CAS  Google Scholar 

  18. Liu K, Yan X, Mao B, Wang S, Deng L (2016) Aptamer-based detection of Salmonella enteritidis using double signal amplification by Klenow fragment and dual fluorescence. Microchim Acta 183(2):643–649

    Article  CAS  Google Scholar 

  19. Reinemann C, von Fritsch UF, Rudolph S, Strehlitz B (2016) Generation and characterization of quinolone-specific DNA aptamers suitable for water monitoring. Biosens Bioelectron 77:1039–1047

    Article  CAS  Google Scholar 

  20. Pilehvar S, Reinemann C, Bottari F, Vanderleyden E, Van Vlierberghe S, Blust R, Strehlitz B, De Wael K (2017) A joint action of aptamers and gold nanoparticles chemically trapped on a glassy carbon support for the electrochemical sensing of ofloxacin. Sensors Actuators B Chem 240:1024–1035

    Article  CAS  Google Scholar 

  21. Zhou X, Wang L, Shen G, Zhang D, **e J, Mamut A, Huang W, Zhou S (2018) Colorimetric determination of ofloxacin using unmodified aptamers and the aggregation of gold nanoparticles. Microchim Acta 185(7):355

    Article  Google Scholar 

  22. Pu W, Zhao H, Huang C, Wu L, Xua D (2012) Fluorescent detection of silver(I) and cysteine using SYBR Green I and a silver(I)-specific oligonucleotide. Microchim Acta 177(1):137–144

    Article  CAS  Google Scholar 

  23. Lv L, Li D, Liu R, Cui C, Guo Z (2017) Label-free aptasensor for ochratoxin A detection using SYBR Gold as a probe. Sensors Actuators B Chem 246:647–652

    Article  CAS  Google Scholar 

  24. Yang C, Bie J, Zhang X, Yan C, Li H, Zhang M, Su R, Zhang X, Sun C (2018) A label-free aptasensor for the detection of tetracycline based on the luminescence of SYBR Green I. Spectrochim Acta A 202(5):382–388

    Article  CAS  Google Scholar 

  25. Cai Y, Cai Y, Mou S, Lu Y (2006) High performance liquid chromatography-ultraviolet photometric detection for the simultaneous determination of cephalosporins in human urine and bovine milk. Chin J Anal Chem 34(6):745–748

    CAS  Google Scholar 

  26. Zipper H, Brunner H, Bernhagen J, Vitzthum F (2004) Investigations on DNA intercalation and surface binding by SYBR Green I, its structure determination and methodological implications. Nucleic Acids Res 32(12):e103

    Article  Google Scholar 

  27. Vitzthum F, Geiger G, Bisswanger H, Brunner H, Bernhagen J (1999) A quantitative fluorescence-based microplate assay for the determination of double-stranded DNA using SYBR Green I and a standard ultraviolet transilluminator gel imaging system. Anal Biochem 276(1):59–64

    Article  CAS  Google Scholar 

  28. Yang Q, Li F, Huang Y, Xu H, Tang L, Wang L, Fan C (2013) Highly sensitive and selective detection of silver(I) in aqueous solution with silver(I)-specific DNA and Sybr green I. Analyst 138(7):2057–2060

    Article  Google Scholar 

  29. Masiero S, Trotta R, Pieraccini S, De Tito S, Perone R, Randazzo A, Spada GP (2010) A non-empirical chromophoric interpretation of CD spectra of DNA G-quadruplex structures. Org Biomol Chem 8(12):2683–2692

    Article  CAS  Google Scholar 

  30. Burge S, Parkinson GN, Hazel P, Todd AK, Neidle S (2006) Quadruplex DNA: sequence, topology and structure. Nucleic Acids Res 34(19):5402–5415

    Article  CAS  Google Scholar 

  31. Lan L, Wang R, Liu L, Cheng L (2019) A label-free colorimetric detection of microRNA via G-quadruplex-based signal quenching strategy. Anal Chim Acta 15(7):6260–6265

    Google Scholar 

  32. Xu H, Zhan S, Zhang D, **a B, Zhan X, Wang L, Zhou P (2015) A label-free fluorescent sensor for the detection of Pb2+ and Hg2+. Anal Methods-UK 7(15):6260–6265

    Article  CAS  Google Scholar 

  33. Kypr J, Kejnovska I, Renciuk D, Vorlickova M (2009) Circular dichroism and conformational polymorphism of DNA. Nucleic Acids Res 37(6):1713–1725

    Article  CAS  Google Scholar 

  34. Zhan S, Xu H, Zhang W, Zhan X, Wu Y, Wang L, Zhou P (2015) Sensitive fluorescent assay for copper (II) determination in aqueous solution using copper-specific ssDNA and Sybr Green I. Talanta 142(1):176–182

    Article  CAS  Google Scholar 

  35. Zhan S, Wu Y, Liu L, **ng H, He L, Zhan X, Luo Y, Zhou P (2013) A simple fluorescent assay for lead(ii) detection based on lead(ii)-stabilized G-quadruplex formation. RSC Adv 3(38):16962

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was sponsored by the National Key Research and Development Program of China (2017YFD0800704), the National Natural Science Foundation of China (21876109 & 41877494), and the Natural Science Foundation of Zhejiang Province (LY18B070029).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lumei Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 607 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, H., Yan, Z., Wang, L. et al. Fluorometric determination for ofloxacin by using an aptamer and SYBR Green I. Microchim Acta 186, 668 (2019). https://doi.org/10.1007/s00604-019-3788-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3788-8

Keywords

Navigation