Log in

Mercaptobenzothiazole-functionalized magnetic carbon nanospheres of type Fe3O4@SiO2@C for the preconcentration of nickel, copper and lead prior to their determination by ICP-MS

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe double-shell magnetic nanoparticles functionalized with 2-mercaptobenzothiazole (MBT) to give nanospheres of the type MBT-Fe3O4@SiO2@C). These are shown to be viable and acid-resistant adsorbents for magnetic separation of the heavy metal ions Ni(II), Cu(II) and Pb(II). MBT act as a binding reagent, and the carbon shell and the silica shell protect the magnetic core. Following 12 min incubation, the loaded nanospheres are magnetically separated, the ions are eluted with 2 M nitric acid and then determined by inductively coupled plasma-mass spectroscopy. The limits of detection of this method are 2, 82 and 103 ng L‾1 for Ni(II), Cu(II), and Pb(II) ions, respectively, and the relative standard deviations (for n = 7) are 6, 7.8, and 7.4 %. The protocol is successfully applied to the quantitation of these ions in tap water and food samples (mint, cabbage, potato, peas). Recoveries from spiked water samples ranged from 97 to 100 %.

Mercaptobenzothiazole-functionalized magnetic carbon nanospheres of type Fe3O4@SiO2@C were synthesized. Then applied for magnetic solid phase extraction of Ni(II), Cu(II) and Pb(II) from water and food samples with LOD of 0.002, 0.082 and 0.103 μg L−1 respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zhang H, Chen L, Zhang LP, Yu XJ (2010) Investigation of radionuclide 63Ni(II) sorption on ZSM-5 zeolite. J Radioanal Nucl Chem 287:357–365

    Article  Google Scholar 

  2. AlOthman ZA, Habila MA, Hashem A (2013) Removal of zinc(II) from aqueous solutions using modified agricultural wastes: kinetics and equilibrium studies. Arab J Geosci 6:4245–4255

    Article  Google Scholar 

  3. Baig JA, Kazi TG, Kazi SAQ, Arain MB, Afridi HI, Kandhro GA, Khan S (2009) Ptimization of cloud point extraction and. Solid phase extraction methods for speciation of arsenic in natural water using multivariate technique. Anal Chim Acta 651:57–63

    Article  CAS  Google Scholar 

  4. Kandhro GA, Soylak M, Kazi TG (2014) Solid phase extraction of thorium on multiwalled carbon nanotubes prior to UV-Vis spectrophotometric determination in ore samples. At Spectrosc 35:267–171

    Google Scholar 

  5. Li C, Zhang Z, Pan J, Gao J, Zhao G, Guan W, Yan Y (2010) Synthesis and characterisation of sodium trititanate whisker surface Cd(II) ion-imprinted polymer and selective solid-phase extraction of cadmium. Int J Mater Struct Integr 4:291–307

    Article  CAS  Google Scholar 

  6. Taghizadeh M, Asgharinezhad AA, Samkhaniany N, Tadjarodi A, Abbaszadeh A, Pooladi M (2014) Solid phase extraction of heavy metal ions based on a novel functionalized magnetic multi-walled carbon nanotube composite with the aid of experimental design methodology. MicrochimActa 181:597–605

    CAS  Google Scholar 

  7. Mahmoud ME, Soliman EM (1997) Silica-immobilized formylsalicylic acid as a selective phase for the extraction of iron(III). Talanta 44:15–22

    Article  CAS  Google Scholar 

  8. Wang X, Zheng Y, Wang A (2009) Fast removal of copper ions from aqueous solution by chitosan-g-poly(acrylic acid)/attapulgite composites. J Hazard Mater 168:970–977

    Article  CAS  Google Scholar 

  9. Habila M, Yilmaz E, ALOthman ZA, Soylak M (2014) Flame atomic adsorption spectrometric determination of Cd, Pb and Cu in food samples after preconcentration using 4-(2-thiazolylazo) resorcinol-modified activated carbon. J Ind Eng Chem 20:3989–3993

    Article  CAS  Google Scholar 

  10. AlOthman ZA, Habila MA, Yilmaz E, Soylak M (2012) Solid phase extraction of Cd(II), Pb(II), Zn(II) and Ni(II) from food samples using multiwalled carbon nanotubes impregnated with 4-(2-thiazolylazo)resorcinol. Microchim Acta 177:397–403

    Article  CAS  Google Scholar 

  11. El-Toni AM, Habila MA, Ibrahim MA, Labis JP, ALOthman ZA (2014) Simple and facile synthesis of amino functionalized hollow core-mesoporous shell silica spheres using anionic surfactant for Pb(II), Cd(II), and Zn(II) adsorption and recovery. Chem Eng J 251:441–450

    Article  CAS  Google Scholar 

  12. Wang X, Guo Y, Yang L, Han M, Zhao J, Cheng X (2012) Nanomaterials as sorbents to remove heavy metal ions in wastewater treatment. J Environ Anal Toxicol 2(7):154–161

    Article  Google Scholar 

  13. Zhao D, Jaroniec M, Hsiao BS (2010) Separation/preconcentration of trace amounts of Cr, Cu and Pb in environmental samples by magnetic solid-phase extraction with Bismuthiol-II immobilized magnetic nanoparticles and their determination by ICP-OES. J Mater Chem 20:4476–4477

    Article  CAS  Google Scholar 

  14. Sadeghi S, Azhdari H, Arabi H, Moghaddam AZ (2012) Surface modified magnetic Fe3O4 nanoparticles as a selective sorbent for solid phase extraction of uranyl ions from water samples. J Hazard Mater 215:208–216

    Article  Google Scholar 

  15. Wang J, Zheng S, Shao Y, Liu J, Xu Z, Zhu D (2010) Amino-functionalized Fe3O4@SiO2 core-shell magnetic nanomaterial as a novel adsorbent for aqueous heavy metals removal. J Colloid Interface Sci 349:293–299

    Article  CAS  Google Scholar 

  16. Shishehbore MR, Afkhami A, Bagheri H (2011) Salicylic acid functionalized silicacoated magnetite nanoparticles for solid phase extraction and preconcentration of some heavy metal ions from various real samples. CHEM CENT J 5(41):1–10

    Google Scholar 

  17. Wan SR, Huang JS, Yan HS, Liu KL (2006) Characterization and analytical application of surface modified magnetic nanoparticles. J Mater Chem 16:298–303

    Article  CAS  Google Scholar 

  18. Deng Y, Qi D, Deng C, Zhang X, Zhao D (2008) Superparamagnetic high-magnetization microspheres with an Fe3O4@SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins. J Am Chem Soc 130:28–29

    Article  CAS  Google Scholar 

  19. Li Y, Leng TH, Lin HQ, Deng CH, Xu XQ, Yao N, et al. (2007) Preparation of Fe3O4@ZrO2 core-shell microspheres as affinity probes for selective enrichment and direct determination of phosphopeptides using matrix-assisted laser desorption ionization mass spectrometry. J Proteome Res 6:4498–4510

    Article  CAS  Google Scholar 

  20. Kong L, Lu X, Bian X, Zhang W, Wang C (2011) Constructing carbon-coated Fe3O4 microspheres as antiacid and magnetic support for palladium nanoparticles for catalytic applications. Appl Mater Interfaces 3:35–42

    Article  CAS  Google Scholar 

  21. Shen HY, Zhu Y, Wen XE, Zhuang YM (2007) Preparation of Fe3O4-C18 nano-magnetic composite materials and their cleanup properties for organophosphorous pesticides. Anal Bioanal Chem 387:2227–2237

    Article  CAS  Google Scholar 

  22. Wu X, Hu J, Zhu B, Lu L, Huang X, Pang D (2011) Aptamer-targeted magnetic spheres as a solid-phase extraction sorbent for determination of ochratoxin a in food samples. J Chromatogr A 1218:7341–7346

    Article  CAS  Google Scholar 

  23. You LJ, Xu S, Ma WF, Li D, Zhang YT, Guo J, et al. (2012) Ultrafast hydrothermal synthesis of high quality magnetic Core phenol − formaldehyde Shell composite microspheres using the microwave method. Langmuir 28:10565–10572

    Article  CAS  Google Scholar 

  24. Yoon T, Chae C, Sun YK, Zhao X, Kung HH, Lee JK (2011) Bottom-up in situ formation of Fe3O4 nanocrystals in a porous carbon foam for lithium-ion battery anodes. J Mater Chem 21:17325–17330

    Article  CAS  Google Scholar 

  25. Zhang XB, Tong HW, Liu SM, Yong GP, Guan YF (2013) An improved Stöber method towards uniform and monodisperse Fe3O4@C spheres. J Mater Chem A 1:7488–7493

    Article  CAS  Google Scholar 

  26. **ong Z, Qin H, Wan H, Huang G, Zhang Z, Dong J, et al. (2013) Layer-by-layer assembly of multilayer polysaccharide coated magnetic nanoparticles for the selective enrichment of glycopeptides. Chem Commun 49:9284–9286

    Article  CAS  Google Scholar 

  27. **ao J, Qiu L, Jiang X, Zhu Y, Ye S, Jiang X (2013) Magnetic porous carbons with high adsorption capacity synthesized by a microwave-enhanced high temperature ionothermal method from a Fe-based metal-organic framework. Carbon 59:372–382

    Article  CAS  Google Scholar 

  28. Aomoa N, Sarmah T, Deshpande UP, Sathe V, Banerjee A, Shripathi T, et al. (2015) Plasma-assisted synthesis of carbon encapsulated magnetic nanoparticles with controlled sizes correlated to smooth variation of magnetic properties. Carbon 84:24–37

    Article  CAS  Google Scholar 

  29. Sevilla M, Valle-Vigo’n P, Fuertes AB (2011) N-doped Polypyrrole-based porous carbons for CO2 capture. Adv Funct Mater 21:2781–2787

    Article  CAS  Google Scholar 

  30. Wang L, Yin J, Zhao L, Tian C, Yu P, Wang J, et al. (2013) Ion-exchanged route synthesis of Fe2N–N-doped graphitic nanocarbons composite as advanced oxygen reduction electrocatalyst. Chem Commun 49:3022–3024

    Article  CAS  Google Scholar 

  31. Parham H, Zargar B, Shiralipour R (2012) Fast and efficient removal of mercury from water samples using magnetic iron oxide nanoparticles modified with 2-mercaptobenzothiazole. J Hazard Mater 94:205–206

    Google Scholar 

  32. Liu J, Sun Z, Deng Y, Zou Y, Li C, Guo X, et al. (2009) Highly water-dispersible biocompatible magnetite particles with low cytotoxicity stabilized by citrate groups. Angew Chem Int Ed 48:5875–5879

    Article  CAS  Google Scholar 

  33. El-Toni AM, Ibrahim MA, Labis JP, Khan A, Alhoshan M (2013) Optimization of synthesis parameters for mesoporous shell formation on magnetic nanocores and their application as nanocarriers for docetaxel cancer drug. In J Mol Sci 14:11496–11509

    Article  Google Scholar 

  34. Yang TY, Liu J, Zheng Y, Monteiro M, Qiao SZ (2013) Facile frabrication of core-shell structured ag@carborn and mesoporous yolk-shell structured Ag@carbon@silica by an extended stober method. Chemistry - A Europe J 19:6942–6945

    Article  CAS  Google Scholar 

  35. Yamamoto Y, Nishimura T, Suzuki T, Tamon H (2001) Control of mesoporosity of carbon gels prepared by sol–gel polycondensation and freeze drying. J Non-Cryst Solids 288(1–3):46–55

    Article  CAS  Google Scholar 

  36. Gong JY, Li SZ, Zhang DG, Zhang XB, Liu C, Tong ZW (2010) High quality self-assembly magnetite (Fe3O4) chain-like core-shell nanowires with luminescence synthesized by a facile one-pot hydrothermal process. Chem Commun 46:3514–3516

    Article  CAS  Google Scholar 

  37. Mouaziz H, Veyret R, Theretz A, Ginot F, Elaissari A (2009) Aminodextran containing magnetite nanoparticles for molecular biology applications: preparation and evaluation. J Biomed Nanotechnol 5:172–182

    Article  CAS  Google Scholar 

  38. Li CH, Qi SH, Zhang DN (2010) Thermal degradation of environmentally friendly phenolic resin/Al2O3 hybrid composite. J Appl Polym Sci 115:3675–3679

    Article  CAS  Google Scholar 

  39. Huang X, Wang G, Yang M, Guo W, Gao H (2011) Synthesis of polyanilinemodified Fe3O4/SiO2/TiO2 composite microsphere and photocatalytic application. Mater Lett 65:2887–2890

    Article  CAS  Google Scholar 

  40. Soliman EM, Mahmoud ME, Ahmed SA (2001) Synthesis, characterization and structure effects on selectivity properties of silica gel covalently bonded diethylenetriamine mono- and bis-salicyaldehyde and naphthaldehyde Schiff,s bases towards some heavy metal ions. Talanta 54(2):243–248 250-253

    Article  CAS  Google Scholar 

  41. Pearson RG (1963) Hard and soft acids and bases. Am Chem Soc 85:3533–3539

    Article  CAS  Google Scholar 

  42. **e F, Lin X, Wu X, **e Z (2008) Solid phase extraction of lead (II), copper (II), cadmium (II) and nickel (II) using gallic acid-modified silica gel prior to determination by flame atomic absorption spectrometry. Talanta 74:836–843

    Article  CAS  Google Scholar 

  43. AlOthman ZA, Unsal YE, Habila M, Tuzen M, Soylak M (2015) A membrane filtration procedure for the enrichment, separation, and flame atomic absorption spectrometric determinations of some metals in water, hair, urine, and fish samples. Desalin Water Treat 53(13):3457–3465

    Article  CAS  Google Scholar 

  44. Habila MA, ALOthman ZA, El-Toni AM, Labis JP, Soylak M (2016) Synthesis and application of Fe3O4@SiO2@TiO2 for photocatalytic decomposition of organic matrix simultaneously with magnetic solid phase extraction of heavy metals prior to ICP-MS analysis. Talanta 154:539–547

    Article  CAS  Google Scholar 

  45. Shahamirifarda SAR, Ghaedia M, Rahimi MR, Hajati S, Montazerozohori S, Soylak M (2016) Simultaneous extraction and preconcentration of Cu2+, Ni2+ and Zn2+ ions using Ag nanoparticle-loaded activated carbon: response surface methodology. Adv Powder Technol 27:426–435

    Article  Google Scholar 

  46. Yilmaz E, Alosmanov RM, Soylak M (2015) Magnetic solid phase extraction of lead (II) and cadmium (II) on a magnetic phosphorus-containing polymer (M-PhCP) for their microsampling flame atomic absorption spectrometric determinations. RSC Adv 5:33801–33808

    Article  CAS  Google Scholar 

  47. Kandhro GA, Soylak M, Kazi TG, Yilmaz E, Afridi HI (2012) Room temperature ionic liquid based Microextraction for pre-concentration of cadmium and copper from biological samples by flame atomic absorption spectrometry. At Spectrosc 33:166–172

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to extend their sincere appreciation to the Deanship of Scientific Research at King Saud University for its funding this work through Research Group No. RG–1435–002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Soylak.

Ethics declarations

The authors declare that they have no competing interests.

Electronic Supplementary Material

ESM 1

(DOCX 573 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Habila, M.A., ALOthman, Z.A., El-Toni, A.M. et al. Mercaptobenzothiazole-functionalized magnetic carbon nanospheres of type Fe3O4@SiO2@C for the preconcentration of nickel, copper and lead prior to their determination by ICP-MS. Microchim Acta 183, 2377–2384 (2016). https://doi.org/10.1007/s00604-016-1880-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-016-1880-x

Keywords

Navigation