Log in

Hierarchical nanoporous platinum-copper alloy for simultaneous electrochemical determination of ascorbic acid, dopamine, and uric acid

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A hierarchical nanoporous PtCu alloy was fabricated by two-step dealloying of a PtCuAl precursor alloy followed by annealing. The new alloy possesses interconnected hierarchical network architecture with bimodal distributions of ligaments and pores. It exhibits high electrochemical activity towards the oxidation of ascorbic acid (AA), dopamine (DA), and uric acid (UA) at working potentials of 0.32, 0.47 and 0.61 V (vs. a mercury sulfate reference electrode), respectively. The new alloy was placed on a glassy carbon electrode and then displayed a wide linear response to AA, DA, and UA in the concentration ranges from 25 to 800 μM, 4 to 20 μM, and 10 to 70 μM, respectively. The lower detection limits are 17.5 μM, 2.8 µM and 5.7 μM at an S/N ratio of 3.

Hierarchical nanoporous PtCu alloy with bimodal interconnected nanoporous architecture was fabricated by two-step dealloying combined with annealing. Combined with bimodal nanoporous structure, a simple and green route to construct highly active and sensitive electrochemical sensor for simultaneous determination of AA, DA, and UA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Liu X, Li X, **ong Y, Huang QM, Li XY, Dong YL, Liu P, Zhang CC (2013) A glassy carbon electrode modified with the nickel (II)-bis (1,10-phenanthroline) complex and multi-walled carbon nanotubes, and its use as a sensor for ascorbic acid. Microchim Acta 180:1309–1316

    Article  CAS  Google Scholar 

  2. Tan HL, Wu J, Chen Y (2014) Terbium (III) based coordination polymer microparticles as a luminescent probe for ascorbic acid. Microchim Acta 181:1431–1437

    Article  CAS  Google Scholar 

  3. Li S-J, Deng D-H, Shi Q, Liu S-R (2012) Electrochemical synthesis of a graphene sheet and gold nanoparticle-based nanocomposite, and its application to amperometric sensing of dopamine. Microchim Acta 177:325–331

    Article  CAS  Google Scholar 

  4. Sanghavi BJ, Wolfbeis OS, Hirsch T, Swami NS (2015) Nanomaterial-based electrochemical sensing of neurological drugs and neurotransmitters. Microchim Acta. doi:10.1007/s00604-014-1308-4

    Google Scholar 

  5. Ai XZ, Ma Q, Su XG (2013) Nanosensor for dopamine and glutathione based on the quenching and recovery of the fluorescence of silica-coated quantum dots. Microchim Acta 180:269–277

    Article  CAS  Google Scholar 

  6. Rafati AA, Afraz A, Hajian A, Assari P (2014) Simultaneous determination of ascorbic acid, dopamine, and uric acid using a carbon paste electrode modified with multiwalled carbon nanotubes, ionic liquid, and palladium nanoparticles. Microchim Acta 181:1999–2008

    Article  CAS  Google Scholar 

  7. Erden PE, Kılıç E (2013) A review of enzymatic uric acid biosensors based on amperometric detection. Talanta 107:312–323

    Article  CAS  Google Scholar 

  8. Wang GF, Sun JG, Zhang W, Jiao SF, Fang B (2009) Simultaneous determination of dopamine, uric acid and ascorbic acid with LaFeO3 nanoparticles modified electrode. Microchim Acta 164:357–362

    Article  CAS  Google Scholar 

  9. Kumbhat S, Dhesingh RS, Kima SJ, Gobi KV, Joshi V, Miura N (2007) Surface plasmon resonance biosensor for dopamine using D3 dopamine receptor as a biorecognition molecule. Biosens Bioelectron 23:421–427

    Article  CAS  Google Scholar 

  10. Pormsila W, Krähenbühl S, Hauser PC (2009) Capillary electrophoresis with contactless conductivity detection for uric acid determination in biological fluids. Anal Chim Acta 636:224–228

    Article  CAS  Google Scholar 

  11. Lee HH, Chen SC (2004) Microchip capillary electrophoresis with electrochemical detector for precolumn enzymatic analysis of glucose, creatinine, uric acid and ascorbic acid in urine and serum. Talanta 64:750–757

    Article  CAS  Google Scholar 

  12. Chen H, Li RB, Lin L, Guo GS, Lin JM (2010) Determination of l-ascorbic acid in human serum by chemiluminescence based on hydrogen peroxide-sodium hydrogen carbonate-CdSe/CdS quantum dots system. Talanta 81:1688–1696

    Article  CAS  Google Scholar 

  13. Moghadam MR, Dadfarnia S, Shabani AMH, Shahbazikhah P (2011) Chemometric-assisted kinetic-spectrophotometric method for simultaneous determination of ascorbic acid, uric acid, and dopamine. Anal Biochem 410:289–295

    Article  CAS  Google Scholar 

  14. Tao Y, Lin YH, Ren JS, Qu XG (2013) A dual fluorometric and colorimetric sensor for dopamine based on BSA-stabilized Au nanoclusters. Biosens Bioelectron 42:41–46

    Article  CAS  Google Scholar 

  15. Zhang W, Yuan R, Chai YQ, Zhang Y, Chen SH (2012) A simple strategy based on lanthanum-multiwalled carbon nanotube nanocomposites for simultaneous determination of ascorbic acid, dopamine, uric acid and nitrite. Sensors Actuators B 166–167:601–607

    Article  Google Scholar 

  16. Xu CX, Liu YQ, Su F, Liu AH, Qiu HJ (2011) Nanoporous PtAg and PtCu alloys with hollow ligaments for enhanced electrocatalysis and glucose biosensing. Biosens Bioelectron 27:160–166

    Article  CAS  Google Scholar 

  17. He YP, Zheng JB, Sheng QL (2012) Cobalt nanoparticles as sacrificial templates for the electrodeposition of palladium nanomaterials in an ionic liquid, and its application to electrochemical sensing of hydrazine. Microchim Acta 177:479–484

    Article  CAS  Google Scholar 

  18. Ge L, Yan JX, Song XR, Yan M, Ge SG, Yu JH (2012) Three-dimensional paper-based electrochemiluminescence immunodevice for multiplexed measurement of biomarkers and point-of-care testing. Biomaterials 33:1024–1031

    Article  CAS  Google Scholar 

  19. Xu CX, Li Q, Liu YQ, Wang JP, Geng HR (2012) Hierarchical nanoporous PtFe alloy with multimodal size distributions and its catalytic performance toward methanol electrooxidation. Langmuir 28:1886–1892

    Article  CAS  Google Scholar 

  20. Xu CX, Zhang H, Hao Q, Duan HM (2014) A hierarchical nanoporous PtCu alloy as an oxygen-reduction reaction electrocatalyst with high activity and durability. ChemPhysChem 79:107–113

    CAS  Google Scholar 

  21. Choi SI, **e SF, Shao MH, Odell JH, Lu N, Peng H, Protsailo L, Guerrero S, Park J, **a XH, Wang JG, Kim MJ, **a YN (2013) Synthesis and characterization of 9 nm Pt-Ni Octahedra with a record high activity of 3.3 A/mg Pt for the oxygen reduction reaction. Nano Lett 13:3420–3425

    Article  CAS  Google Scholar 

  22. Ammam M, Easton EB (2013) PtCu/C and Pt (Cu)/C catalysts: synthesis, characterization and catalytic activity towards ethanol electrooxidation. J Power Sources 222:79–87

    Article  CAS  Google Scholar 

  23. Liu LC, SamjeskéG TS, Nagasawa K, Iwasawa Y (2014) Fabrication of PtCu and PtNiCu multi-nanorods with enhanced catalytic oxygen reduction activities. J Power Sources 253:1–8

    Article  CAS  Google Scholar 

  24. Amertharaj S, Hasnat MA, Mohamed N (2014) Electroreduction of nitrate ions at a platinum-copper electrode in analkaline medium: Influence of sodium inositol phytate. Electrochim Acta 136:557–564

    Article  CAS  Google Scholar 

  25. Wang JP, Gao H, Sun FL, Xu CX (2014) Nanoporous PtAu alloy as an electrochemical sensor for glucose and hydrogen peroxide. Sensors Actuators B 191:612–618

    Article  CAS  Google Scholar 

  26. Zhan DP, Velmurugan J, Mirkin MV (2009) Adsorption/desorption of hydrogen on Pt Nanoelectrodes evidence of surface diffusion and spillover. J Am Chem Soc 131:14756–14760

    Article  CAS  Google Scholar 

  27. Xu CX, Hou JG, Pang XH, Li XJ, Zhu ML, Tang BY (2012) Nanoporous PtCo and PtNi alloy ribbons for methanol electrooxidation. Int J Hydrog Energy 37:10489–10498

    Article  CAS  Google Scholar 

  28. Zou LL, Guo J, Liu JY, Zou ZQ, Akins DL, Yang H (2014) Highly alloyed PtRu black electrocatalysts for methanol oxidation prepared using magnesia nanoparticles as sacrificial templates. J Power Sources 248:356–362

    Article  CAS  Google Scholar 

  29. Liu YQ, Xu CX (2013) Nanoporous PdTi alloys as non-platinum oxygen-reduction reaction electrocatalysts with enhanced activity and durability. ChemSusChem 6:78–84

    Article  CAS  Google Scholar 

  30. Thiagarajan S, Chen SM (2007) Preparation and characterization of PtAu hybrid film modified electrodes and their use in simultaneous determination of dopamine, ascorbic acid and uric acid. Talanta 74:212–222

    Article  CAS  Google Scholar 

  31. Li SJ, He JZ, Zhang MJ, Zhang RX, Lv XL, Li SH, Pang H (2013) Electrochemical detection of dopamine using water-soluble sulfonated graphene. Electrochim Acta 102:58–65

    Article  CAS  Google Scholar 

  32. Kim SJ, Kim YL, Yu A, Lee J, Lee SC, Lee C, Kima MH, Lee Y (2014) Electrospun iridium oxide nanofibers for direct selective electrochemical detection of ascorbic acid. Sensors Actuators B 196:480–488

    Article  CAS  Google Scholar 

  33. Bi HQ, Li YH, Liu SF, Guo PZ, Wei ZB, Lv CX, Zhang JZ, Zhao XS (2012) Carbon-nanotube-modified glassy carbon electrode for simultaneous determination of dopamine, ascorbic acid and uric acid: the effect of functional groups. Sensors Actuators B 171–172:1132–1140

    Article  Google Scholar 

  34. Mirčeski V, Lovrić M (2004) EC mechanism of an adsorbed redox couple. Volume vs surface chemical reaction. J Electroanal Chem 565:191–202

    Article  Google Scholar 

  35. Safavi A, Maleki N, Moradlou O, Tajabadi F (2006) Simultaneous determination of dopamine, ascorbic acid, and uric acid using carbon ionic liquid electrode. Anal Biochem 359:224–229

    Article  CAS  Google Scholar 

  36. Sheng ZH, Zheng XQ, Xu JY, Bao WJ, Wang FB, **a XH (2012) Electrochemical sensor based on nitrogen doped graphene: simultaneous determination of ascorbic acid, dopamine and uric acid. Biosens Bioelectron 34:125–131

    Article  CAS  Google Scholar 

  37. Cai WH, Lai T, Du HJ, Ye JS (2014) Electrochemical determination of ascorbic acid, dopamine and uric acid based on an exfoliated graphite paper electrode: a high performance flexible sensor. Sensors Actuators B 193:492–500

    Article  CAS  Google Scholar 

  38. Sun CL, Lee HH, Yang JM, Wu CC (2011) The simultaneous electrochemical detection of ascorbic acid, dopamine, and uric acid using graphene/size-selected Pt nanocomposites. Biosens Bioelectron 26:3450–3455

    Article  CAS  Google Scholar 

  39. Du J, Yue RR, Ren FF, Yao ZQ, Jiang FX, Yang P, Du YK (2014) Novel graphene flowers modified carbon fibers for simultaneous determination of ascorbic acid, dopamine and uric acid. Biosens Bioelectron 53:220–224

    Article  CAS  Google Scholar 

  40. Liu ML, Chen Q, Lai CL, Zhang YY, Deng JH, Li HT, Yao SZ (2013) A double signal amplification platform for ultrasensitive and simultaneous detection of ascorbic acid, dopamine, uric acid and acetaminophen based on a nanocomposite of ferrocene thiolate stabilized Fe3O4@Au nanoparticles with graphene sheet. Biosens Bioelectron 48:75–81

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation of China (21271085, 21103071).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caixia Xu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 690 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, D., Fan, D., Wang, J. et al. Hierarchical nanoporous platinum-copper alloy for simultaneous electrochemical determination of ascorbic acid, dopamine, and uric acid. Microchim Acta 182, 1345–1352 (2015). https://doi.org/10.1007/s00604-015-1450-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-015-1450-7

Keywords

Navigation