Log in

Main Controlling Factors and Prediction Model of Fracture Scale in Tight Sandstone: Insights from Dynamic Reservoir Data and Geomechanical Model Analysis

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

Natural fractures are effective storage spaces and the main seepage channels of tight reservoirs, and the spacing and role of structural fractures of different scales in tight reservoirs are also different. However, the opening or height of underground natural fractures is often difficult to determine directly using seismic data or imaging logging, which restricts the characterization, modeling, and analysis of the formation mechanisms of reservoir fractures. This paper uses the morphology of water absorption profiles and conventional logging data to calculate the ratio of the isotope intensity of a single well to natural gamma values from logging and characterize the types of water absorption profiles. The size (opening and height) of the fractures is closely related to the height of the water absorption profile and the fluctuation in the water absorption intensity. The calculated rock mechanics parameters along a single well, combined with the internal friction angle of the rock and the fracture strike, are used to determine the magnitude and direction of the paleostress of the Y290-Y414 Block in the southeastern Ordos Basin during the Himalayan period. By establishing a single-well geomechanical model to simulate the three-dimensional distribution of paleostress and paleostrain during the formation of fractures, a database model for constructing the scale of fractures is established. Through correlation analysis, a model for predicting the strength and thickness of the water absorption profile is established. Finally, the three-dimensional distribution pattern of the scale of structural fractures is predicted, and the reliability of the prediction results is verified using dynamic development data. The research results have certain reference significance for explaining the mechanism of fracture formation, characterizing the scale of underground fractures, and modeling reservoir fractures.

Highlights

A model for predicting the height and opening of structural fractures is established.

The scale of fractures is closely related to the mechanical structure of the rock layers.

The presence of large-scale fractures is the main cause of water channeling and flooding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  • Allegre CJ, Le Mouel JL, Provost A (1982) Scaling rules in rock fracture and possible implications for earthquake prediction. Nature 297(5861):47–49

    Article  Google Scholar 

  • Bourbiaux B, Basquet R, Cacas MC, Daniel JM, Sarda S (2002) An integrated workflow to account for multi-scale fractures in reservoir simulation models: implementation and benefits. In: Abu Dhabi international petroleum exhibition and conference (pp. SPE-78489). SPE.

  • Cai J, Wood DA, Hajibeygi H, Iglauer S (2022) Multiscale and multiphysics influences on fluids in unconventional reservoirs: modeling and simulation. Adv Geo Energy Res 6(2):91–94

    Article  Google Scholar 

  • Chai Y, Yin S (2021) 3D displacement discontinuity analysis of in- situ stress perturbation near a weak fault. Adv Geo Energy Res 5(3):286–296

    Article  Google Scholar 

  • Cheng Z, Bian L, Chen H, Wang X, Ye D, He L (2022) Multiscale fracture prediction technique via deep learning, seismic gradient disorder, and aberrance: applied to tight sandstone reservoirs in the Hutubi block, southern Junggar Basin. Interpretation 10(4):T647–T663

    Article  Google Scholar 

  • Dashti R, Rahimpour-Bonab H, Zeinali M (2018) Fracture and mechanical stratigraphy in naturally fractured carbonate reservoirs—a case study from Zagros region. Mar Pet Geol 97:466–479

    Article  Google Scholar 

  • Deng H, Steefel C, Molins S, DePaolo D (2018) Fracture evolution in multimineral systems: the role of mineral composition, flow rate, and fracture aperture heterogeneity. ACS Earth Space Chem 2(2):112–124

    Article  CAS  Google Scholar 

  • Dong S, Zeng L, Du X, Bao X, Lyu W, Ji C, Hao J (2022) An intelligent prediction method of fractures in tight carbonate reservoirs. Pet Explor Dev 49(6):1364–1376

    Article  Google Scholar 

  • Fang K, Tang H, Zhu J, Fu Z, An P, Zhang B, Tang C (2023) Study on geomechanical and physical models of necking-type slopes. J Earth Sci. https://doi.org/10.1007/s12583-021-1573-1

    Article  Google Scholar 

  • Gale JF, Laubach SE, Olson JE, Eichhubl P, Fall A (2014) Natural fractures in shale: a review and new observations. AAPG Bull 98(11):2165–2216

    Article  Google Scholar 

  • Gao D (2013) Integrating 3D seismic curvature and curvature gradient attributes for fracture characterization: methodologies and interpretational implications. Geophysics 78(2):O21–O31

    Article  Google Scholar 

  • Gong L, Fu X, Gao S, Zhao P, Luo Q, Zeng L, Liu B (2018) Characterization and prediction of complex natural fractures in the tight conglomerate reservoirs: a fractal method. Energies 11(9):2311

    Article  Google Scholar 

  • Healy D, Rizzo RE, Cornwell DG, Farrell NJ, Watkins H, Timms NE, Smith M (2017) FracPaQ: A MATLAB™ toolbox for the quantification of fracture patterns. J Struct Geol 95:1–16

    Article  Google Scholar 

  • Hunt L, Reynolds S, Hadley S, Downton J, Chopra S (2011) Causal fracture prediction: curvature, stress, and geomechanics. Lead Edge 30(11):1274–1286

    Article  Google Scholar 

  • Jia P, Cheng L, Huang S, Wu Y (2016) A semi-analytical model for the flow behavior of naturally fractured formations with multi-scale fracture networks. J Hydrol 537:208–220

    Article  Google Scholar 

  • Jiang L, Wang Q, Wang X, Jiang C, Zhang L, Xue Z, Chu Y (2013) Joint development and paleostress field in Mesozoic strata of the southeastern Ordos Basin. Acta Petrologica Sinica 29(5):1774–1790

    Google Scholar 

  • Lai J, Wang G, Fan Z, Chen J, Qin Z, **ao C, Fan X (2017) Three-dimensional quantitative fracture analysis of tight gas sandstones using industrial computed tomography. Sci Rep 7(1):1825

    Article  Google Scholar 

  • Laubach SE, Olson JE, Gross MR (2009) Mechanical and fracture stratigraphy. AAPG Bull 93(11):1413–1426

    Article  Google Scholar 

  • Laubach SE, Lander RH, Criscenti LJ, Anovitz LM, Urai JL, Pollyea RM, Pyrak-Nolte L (2019) The role of chemistry in fracture pattern development and opportunities to advance interpretations of geological materials. Rev Geophys 57(3):1065–1111

    Article  Google Scholar 

  • Lee SH, Jensen CL, Lough MF (2000) Efficient finite-difference model for flow in a reservoir with multiple length-scale fractures. SPE J 5(03):268–275

    Article  Google Scholar 

  • Li H, Yu F, Wang M, Wang Y, Liu Y (2022) Quantitative prediction of structural fractures in the Paleocene lower Wenchang formation reservoir of the Lufeng Depression. Adv Geo Energy Res 6(5):375–387

    Article  CAS  Google Scholar 

  • Liu J, Yang H, Bai J, Wu K, Zhang G, Liu Y, **ao Z (2021) Numerical simulation to determine the fracture aperture in a typical basin of China. Fuel 283:118952

    Article  CAS  Google Scholar 

  • Liu J, Chen P, Xu K, Yang H, Liu H, Liu Y (2022a) Fracture stratigraphy and mechanical stratigraphy in sandstone: a multiscale quantitative analysis. Mar Pet Geol 145:105891

    Article  Google Scholar 

  • Liu J, Yang H, Xu K, Wang Z, Liu X, Cui L, Liu Y (2022b) Genetic mechanism of transfer zones in rift basins: Insights from geomechanical models. GSA Bull 134(9–10):2436–2452

    Article  Google Scholar 

  • Liu J, Ding W, Yang H, Dai P, Wu Z, Zhang G (2023a) Natural fractures and rock mechanical stratigraphy evaluation in the Huaqing Area, Ordos basin: a quantitative analysis based on numerical simulation. Earth Sci 48(7):1–17

    Google Scholar 

  • Liu J, Mei L, Ding W, Xu K, Yang H, Liu Y (2023b) Asymmetric propagation mechanism of hydraulic fracture networks in continental reservoirs. GSA Bull 135(3–4):678–688

    Article  Google Scholar 

  • Lyu W, Zeng L, Zhou S, Du X, **a D, Liu G, Weng J (2019) Natural fractures in tight-oil sandstones: a case study of the upper Triassic Yanchang Formation in the southwestern Ordos Basin. China AAPG Bulletin 103(10):2343–2367

    Article  Google Scholar 

  • Lyu W, Zeng L, Lyu P, Yi T, Dong S, Wang S, Chen H (2022) Insights into the mechanical stratigraphy and vertical fracture patterns in tight oil sandstones: the upper Triassic Yanchang Formation in the eastern Ordos Basin, China. J Petrol Sci Eng 212:110247

    Article  CAS  Google Scholar 

  • Manchuk JG, Deutsch CV (2012) A flexible sequential Gaussian simulation program: USGSIM. Comput Geosci 41:208–216

    Article  Google Scholar 

  • Milad B, Slatt R (2018) Impact of lithofacies variations and structural changes on natural fracture distributions. Interpretation 6(4):T873–T887

    Article  Google Scholar 

  • Moinfar A, Varavei A, Sepehrnoori K, Johns RT (2014) Development of an efficient embedded discrete fracture model for 3D compositional reservoir simulation in fractured reservoirs. SPE J 19(02):289–303

    Article  Google Scholar 

  • Moinfar A, Varavei A, Sepehrnoori K, Johns RT (2013) Development of a coupled dual continuum and discrete fracture model for the simulation of unconventional reservoirs. In: SPE Reservoir Simulation Conference? (pp. SPE-163647). SPE.

  • Ni Q, Zhou W, Ni G, Li T, Wu W, Wang M (2023) Characterization of fractures in low-permeability thin tight sandstones: a case study of Chang 6 Member, Yanchang Formation, western Ordos Basin. Geol J. https://doi.org/10.1002/gj.4704

    Article  Google Scholar 

  • Nussbaumer R, Mariethoz G, Gravey M, Gloaguen E, Holliger K (2018) Accelerating sequential gaussian simulation with a constant path. Comput Geosci 112:121–132

    Article  Google Scholar 

  • Olorode O, Wang B, Rashid HU (2020) Three-dimensional projection-based embedded discrete-fracture model for compositional simulation of fractured reservoirs. SPE J 25(04):2143–2161

    Article  Google Scholar 

  • Olson JE (2007) Fracture aperture, length and pattern geometry development under biaxial loading: a numerical study with applications to natural, cross-jointed systems. Geol Soc Lond Spec Publ 289(1):123–142

    Article  Google Scholar 

  • Olson JE (2003) Sublinear scaling of fracture aperture versus length: an exception or the rule?. J Geophys Res 108(B9):2413. https://doi.org/10.1029/2001JB000419

  • Ortega OJ, Marrett RA, Laubach SE (2006) A scale-independent approach to fracture intensity and average spacing measurement. AAPG Bull 90(2):193–208

    Article  Google Scholar 

  • Rao X, **n L, He Y, Fang X, Gong R, Wang F, Dai W (2022) Numerical simulation of two-phase heat and mass transfer in fractured reservoirs based on projection-based embedded discrete fracture model (pEDFM). J Petrol Sci Eng 208:109323

    Article  CAS  Google Scholar 

  • Samsu A, Cruden AR, Micklethwaite S, Grose L, Vollgger SA (2020) Scale matters: the influence of structural inheritance on fracture patterns. J Struct Geol 130:103896

    Article  Google Scholar 

  • Shaban A, Sherkati S, Miri SA (2011) Comparison between curvature and 3D strain analysis methods for fracture predicting in the Gachsaran oil field (Iran). Geol Mag 148(5–6):868–878

    Article  Google Scholar 

  • Shackleton JR, Cooke ML, Sussman AJ (2005) Evidence for temporally changing mechanical stratigraphy and effects on joint-network architecture. Geology 33(2):101–104

    Article  Google Scholar 

  • Ukar E, Laubach SE, Hooker JN (2019) Outcrops as guides to subsurface natural fractures: example from the Nikanassin Formation tight-gas sandstone, Grande Cache, Alberta foothills, Canada. Mar Pet Geol 103:255–275

    Article  Google Scholar 

  • Wang M, Cao P, Li RC, Fan X (2017) Effect of water absorption ratio on tensile strength of red sandstone and morphological analysis of fracture surfaces. J Cent S Univ 24(7):1647–1653

    Article  CAS  Google Scholar 

  • Wang J, **e HP, Matthai SK, Hu JJ, Li CB (2023) The role of natural fracture activation in hydraulic fracturing for deep unconventional geo-energy reservoir stimulation. Pet Sci. https://doi.org/10.1016/j.petsci.2023.01.007

    Article  Google Scholar 

  • Wu H, Zhou Y, Yao Y, Wu K (2019) Imaged based fractal characterization of micro-fracture structure in coal. Fuel 239:53–62

    Article  CAS  Google Scholar 

  • **ao Z, Ding W, Liu J, Tian M, Yin S, Zhou X, Gu Y (2019) A fracture identification method for low-permeability sandstone based on R/S analysis and the finite difference method: a case study from the Chang 6 reservoir in Huaqing oilfield, Ordos Basin. J Petrol Sci Eng 174:1169–1178

    Article  CAS  Google Scholar 

  • **e J, Qin Q, Fan C (2019) Quantitative prediction of fracture distribution of the Longmaxi formation in the Dingshan area, China using FEM numerical simulation. Acta Geologica Sinica-Engl Edit 93(6):1662–1672

    Article  Google Scholar 

  • Xu B, Wang Y (2021) Profile control performance and field application of preformed particle gel in low-permeability fractured reservoir. J Pet Explor Prod 11(1):477–482

    CAS  Google Scholar 

  • Yang YB, **ao WL, Zheng LL, Lei QH, Qin CZ, He YA, Chen M (2023) Pore throat structure heterogeneity and its effect on gas-phase seepage capacity in tight sandstone reservoirs: a case study from the Triassic Yanchang Formation, Ordos Basin. Pet Sci. https://doi.org/10.1016/j.petsci.2023.03.020

    Article  Google Scholar 

  • Zeng L, Li X (2009) Fractures in sandstone reservoirs with ultra-low permeability: a case study of the Upper Triassic Yanchang Formation in the Ordos Basin. China Aapg Bull 93(4):461–477

    Article  Google Scholar 

  • Zeng L, Gao C, Qi J, Wang Y, Li L, Qu X (2008) The distribution rule and seepage effect of the fractures in the ultra-low permeability sandstone reservoir in east Gansu Province, Ordos Basin. Sci China, Ser D Earth Sci 51:44–52

    Article  Google Scholar 

  • Zhang W, Wu T, Li Z, Liu S, Qiu A, Li Y, Shi Y (2021) Fracture recognition in ultrasonic logging images via unsupervised segmentation network. Earth Sci Inf 14:955–964

    Article  Google Scholar 

  • Zhao X, Lu W, Wang C, Zhu S, Fan J (2020) Major factors controlling waterflooding-induced fracture development in low-permeability reservoirs—a case study of Chang 6 reservoir in W block in Ansai oilfield. Ordos Basin Oil Gas Geol 41(3):586–595

    Google Scholar 

  • Zhong J, Shengxin LIU, Yinsheng MA, Chengming YIN, Chenglin LIU, Zongxing LI, Yong LI (2015) Macro-fracture mode and micro-fracture mechanism of shale. Pet Explor Dev 42(2):269–276

    Article  CAS  Google Scholar 

  • Zou Y, Gao B, Zhang S, Ma X, Sun Z, Wang F, Liu C (2022) Multi-fracture nonuniform initiation and vertical propagation behavior in thin interbedded tight sandstone: an experimental study. J Petrol Sci Eng 213:110417

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (No. 42102156), and the “CUG Scholar” Scientific Research Funds at China University of Geosciences (Wuhan) (Project No. 2022046).

Funding

The work of **gshou Liu was funded by Young Scientists Fund under Grant No. 42102156.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **gshou Liu.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Lu, Y., Xu, K. et al. Main Controlling Factors and Prediction Model of Fracture Scale in Tight Sandstone: Insights from Dynamic Reservoir Data and Geomechanical Model Analysis. Rock Mech Rock Eng (2024). https://doi.org/10.1007/s00603-024-03979-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00603-024-03979-3

Keywords

Navigation