Log in

Elastic Anisotropy of a Metamorphic Rock Sample of the Canadian Shield in Northeastern Alberta

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

The presence of fractures and textures cause metamorphic rock masses to be seismically anisotropic. Neglect of this anisotropy in the processing of field seismic data causes problems in the final reflection images both in terms of their quality and in the true positioning of subsurface features. To quantify the degree of seismic anisotropy in the subsurface, one method is to estimate the anisotropic parameters from the elastic stiffnesses of a rock sample. Using the ultrasonic pulse transmission method, measurements of the compressional and shear wave phase velocities as a function of confining pressure are used to calculate the elastic stiffnesses of a metamorphic granite core sample from the Precambrian basement in northeastern Alberta. Velocities are measured parallel, normal and oblique to an identified foliation plane of the sample assumed to be a transversely isotropic medium. The compressional wave velocities are measured to be in the range of 5,352–6,019 m/s along the foliation plane and 4,752–5,396 m/s normal to the foliation plane over the range of confining pressures from 0 to 60 MPa. Besides providing valuable in situ velocity information for the velocity models, the results also confirm the anisotropic behavior of the metamorphic rock with the estimated compressional and shear wave anisotropy valued at 12 and 8 %, respectively. Such degree of seismic anisotropy should be taken into consideration at the seismic scale when working with three-dimensional geophysical models of the Precambrian basement to minimize any out-of-plane anomalies in the final seismic sections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aki K, Richards PG (1980) Quantitative seismology, theory and methods, vol 1. W. H Freeman and Company, San Francisco

    Google Scholar 

  • Alkhalifah T, Larner K (1994) Migration error in transversely isotropic media. Geophysics 59(9):1405–1418. doi:10.1190/1.1443698

    Article  Google Scholar 

  • APC International Ltd. (2011) Physical and piezoelectric properties of APC materials. http://www.americanpiezo.com/apc-materials/piezoelectric-properties.html

  • Auld BA (1990) Acoustic fields and waves in solids, 2nd edn. Kreiger Publishing Company, Malaba

    Google Scholar 

  • Backus G (1970) A geometrical picture of anisotropic elastic tensors. Rev Geophys Space Ge 8(3):633–671. doi:10.1029/Rg008i003p00633

    Article  Google Scholar 

  • Barberini V, Burlini L, Zappone A (2007) Elastic properties, fabric and seismic anisotropy of amphibolites and their contribution to the lower crust reflectivity. Tectonophysics 445(3–4):227–244. doi:10.1016/j.tecto.2007.08.017

    Article  Google Scholar 

  • Birch F (1961) The velocity of compressional waves in rocks to 10 kilobars (part II). J Geophys Res 66:2199–2224

    Article  Google Scholar 

  • Boness NL, Zoback MD (2004) Stress-induced seismic velocity anisotropy and physical properties in the SAFOD Pilot Hole in Parkfield, CA. Geophys Res Lett 31(15):L15S17. doi:10.1029/2003gl019020

    Article  Google Scholar 

  • Bourbie T, Coussy O, Zinszner B (1987) Acoustics of porous media. Gulf Publishing Company, Houston

    Google Scholar 

  • Brugger K (1965) Pure modes for elastic waves in crystals. J Appl Phys 36(3):759. doi:10.1063/1.1714215

    Article  Google Scholar 

  • Canadian Association of Petroleum Producers (CAPP) (2013) Statistical handbook for Canada’s upstream petroleum industry, vol 2013–9999. Technical Report. Canadian Association of Petroleum Producers, Calgary, Alberta, Canada

  • Chan J (2013) Subsurface geophysical characterization of the crystalline Canadian Shield in Northeastern Alberta: Implications for Geothermal Development. University of Alberta, Edmonton. http://hdl.handle.net/10402/era.32882

  • Cholach PY, Molyneux JB, Schmitt DR (2005) Flin Flon Belt seismic anisotropy: elastic symmetry, heterogeneity, and shear-wave splitting. Can J Earth Sci 42(4):533–554. doi:10.1139/E04-094

    Article  Google Scholar 

  • Crampin S (1981) A review of a wave motion in anisotropic and cracked elastic media. Wave Motion 3:343–391

    Article  Google Scholar 

  • Crampin S (1990) Alignment of near surface inclusions and appropriate crack geometries for hot dry rock experiments. Geophys Prospect 38:621–631

    Article  Google Scholar 

  • Daley PF, Hron F (1977) Reflection and transmission coefficients for transversely isotropic media. Bull Seismol Soc Am 67(3):661–675

    Google Scholar 

  • Daley PF, Hron F (1979) Reflection and transmission coefficients for seismic-waves in ellipsoidally anisotropic media. Geophysics 44(1):27–38. doi:10.1190/1.1440920

    Article  Google Scholar 

  • Dellinger J, Vernik L (1994) Do travel times in pulse-transmission experiments yield anisotropic group or phase velocities? Geophysics 11:1774–1779

    Article  Google Scholar 

  • Eken T, Plomerova J, Vecsey L, Babuska V, Roberts R, Shomali H, Bodvarsson R (2012) Effects of seismic anisotropy on P-velocity tomography of the Baltic Shield. Geophys J Int 188(2):600–612. doi:10.1111/j.1365-246X.2011.05280.x

    Article  Google Scholar 

  • Fedorov FI (1968) Theory of elastic waves in crystals. Plenum Press, New York

  • Gardner GHF, Wyllie MRJ, Droschak DM (1965) Hysteresis in the velocity-pressure characteristics of rocks. Geophysics 30:111–116

    Article  Google Scholar 

  • Godfrey NJ, Christensen NI, Okaya DA (2002) The effect of crustal anisotropy on reflector depth and velocity determination from wide-angle seismic data: a synthetic example based on South Island, New Zealand. Tectonophysics 355(1–4):145–161. doi:10.1016/S0040-1951(02)00138-5

    Article  Google Scholar 

  • Gupta HK (2011) Encyclopedia of Solid Earth Physics, vol Volume 1., Encyclopedia of Earth Science SeriesSpringer, The Netherlands

    Book  Google Scholar 

  • Hemsing DB (2007) Laboratory determination of seismic anisotropy in sedimentary rock from the Western Canadian Sedimentary Basin. University of Alberta, Edmonton

    Google Scholar 

  • Issac JH, Lawton DC (1999) Image mispositioning due to dip** TI media: a physical seismic modeling study. Geophysics 64(4):1230–1238

    Article  Google Scholar 

  • Ji S, Wang Q, Marcotte D, Salisbury MH, Xu Z (2007) P wave velocities, anisotropy and hysteresis in ultrahigh-pressure metamorphic rocks as a function of confining pressure. J Geophys Res 112(B09204):1–24. doi:10.1029/2006JB004867

    Google Scholar 

  • Johnson LR, Wenk HR (1974) Anisotropy of physical properties in metamorphic rocks. Tectonophysics 23(1–2):79–98. doi:10.1016/0040-1951(74)90112-7

    Article  Google Scholar 

  • Kebaili A, Schmitt DR (1997) Ultrasonic anisotropic phase velocity determination with the Radon transformation. J Acoust Soc Am 101(6):3278–3286. doi:10.1121/1.418344

    Article  Google Scholar 

  • Kern H, Schenk V (1988) A model of velocity structure beneath Calabria, southern Italy, based on laboratory data. Earth Planet Sci Lett 87:325–337

    Article  Google Scholar 

  • Kern H, Wenk HR (1990) Fabric-related velocity anisotropy and shear-wave splitting in rocks from the Santa Rosa Mylonite zone. California. J Geophys Res Solid 95(B7):11213–11223. doi:10.1029/Jb095ib07p11213

    Article  Google Scholar 

  • Kern H, ** ZM, Gao S, Popp T, Xu ZQ (2002) Physical properties of ultrahigh-pressure metamorphic rocks from the Sulu terrain, eastern central China: implications for the seismic structure at the Donghai (CCSD) drilling site. Tectonophysics 354(3–4):315–330. doi:10.1016/S0040-1951(02)00339-6

    Article  Google Scholar 

  • Kern H, Ivankina TI, Nikitin AN, Lokajicek T, Pros Z (2008) The effect of oriented microcracks and crystallographic and shape preferred orientation on bulk elastic anisotropy of a foliated biotite gneiss from Outokumpu. Tectonophysics 457(3–4):143–149. doi:10.1016/j.tecto.2008.06.015

    Article  Google Scholar 

  • Mah M, Schmitt DR (2001) Near point-source longitudinal and transverse mode ultrasonic arrays for material characterization. IEEE Ultrason Ferroelectr Freq Control 48:691–698

    Article  Google Scholar 

  • Mah M, Schmitt DR (2003) Determination of the complete elastic stiffnesses from ultrasonic phase velocity measurements. J Geophys Res 108:11. doi:10.1029/2001JB001586

    Google Scholar 

  • Mainprice D, Nicolas A (1989) Development of shape and lattice preferred orientations—application to the seismic anisotropy of the lower crust. J Struct Geol 11(1–2):175–189. doi:10.1016/0191-8141(89)90042-4

    Article  Google Scholar 

  • Majorowicz J, Gosnold W, Gray A, Safanda J, Klenner R, Unsworth M (2012) Implications of post-glacial warming for Northern Alberta heat flow—correcting for the underestimate of the geothermal potential. GRC Trans 36:693–698

    Google Scholar 

  • Majorowicz J, Chan J, Crowell J, Gosnold W, Heaman LM, Kück J, Nieuwenhuis G, Schmitt DR, Walsh N, Unsworth M, Weides S (2014) The first deep heat flow determination in crystalline basement rocks beneath the Western Canadian Sedimentary Basin. Geophys J Int 197(2):731–747. doi:10.1093/gji/ggu065

    Article  Google Scholar 

  • Meléndez Martínez J (2014) Elastic properties of sedimentary rocks. PhD University of Alberta, Edmonton

    Google Scholar 

  • Meléndez Martínez J, Schmitt DR (2013) Anisotropic elastic moduli of carbonates and evaporites from the Weyburn-Midale reservoir and seal rocks. Geophys Prospect 61(2):363–379. doi:10.1111/1365-2478.12032

    Article  Google Scholar 

  • Molyneux JB, Schmitt DR (1999) First-break timing: arrival onset times by direct correlation. Geophysics 64(5):1492–1501. doi:10.1190/1.1444653

    Article  Google Scholar 

  • Musgrave MJP (1970) Crystal acoustic. Holden-Day, San Francisco

    Google Scholar 

  • Nara Y, Kato H, Yoneda T, Kaneko K (2011) Determination of three-dimensional microcrack distribution and principal axes for granite using a polyhedral specimen. Int J Rock Mech Min Sci 48(2):316–335. doi:10.1016/j.ijrmms.2010.08.009

    Article  Google Scholar 

  • Newman GA, Gasperikova E, Hoversten GM, Wannamaker PE (2008) Three-dimensional magnetotelluric characterization of the Coso geothermal field. Geothermics 37(4):369–399. doi:10.1016/j.geothermics.2008.02.006

    Article  Google Scholar 

  • Nye JF (1985) Physical properties of crystals. Oxford University Press, London

    Google Scholar 

  • Pros Z, Lokajiček T, Klíma K (1998) Laboratory approach to the study of elastic anisotropy on rock samples. Pure appl Geophys 151:619–629

    Article  Google Scholar 

  • Pros Z, Lokajiček T, Přikryl R, Klíma K (2003) Direct measurement of 3-D elastic anisotropy on rocks from the Ivrea Zone (Southern Alps, NW Italy). Tectonophysics 370:31–47

    Article  Google Scholar 

  • Rabbel W (1994) Seismic anisotropy at the continental deep drilling site (Germany). Tectonophysics 232(1–4):329–341. doi:10.1016/0040-1951(94)90094-9

    Article  Google Scholar 

  • Sanders CO, Ponko SC, Nixon LD, Schwartz EA (1995) Seismological evidence for magmatic and hydrothermal structure in long-valley Caldera from local earthquake attenuation and velocity tomography. J Geophys Res-Sol Ea 100(B5):8311–8326. doi:10.1029/95jb00152

    Article  Google Scholar 

  • Sano O, Kudo Y, Mizuta Y (1992) Experimental determination of elastic constants of Oshima granite, Barre granite, and Chelmsford granite. J Geophys Res 97(B3):3367–3379. doi:10.1029/91JB02934

    Article  Google Scholar 

  • Sarout J, Molez L, Guéguen Y, Hoteit N (2007) Shale dynamic properties and anisotropy under triaxial loading: experimental and theoretical investigations. Phys Chem Earth A/B/C 32(8–14):896–906. doi:10.1016/j.pce.2006.01.007

    Article  Google Scholar 

  • Schijns H, Schmitt DR, Heikkinen PJ, Kukkonen IT (2012) Seismic anisotropy in the crystalline upper crust: observations and modelling from the Outokumpu scientific borehole, Finland. Geophys J Int 189(1):541–553. doi:10.1111/j.1365-246X.2012.05358.x

    Article  Google Scholar 

  • Schmitt DR, Currie CA, Zhang L (2012) Crustal stress determination from boreholes and rock cores: fundamental principles. Tectonophysics 580:1–26. doi:10.1016/j.tecto.2012.08.029

    Article  Google Scholar 

  • Sheriff RE (2002) Encyclopedic Dictionary of Applied Geophysics, vol 13. Geophysical Reference Series, 4th edn. Society of Exploration Geophysicists

  • Sibbit AM (1995) Quantifying porosity and estimating permeability from well logs in fractured basement reservoirs. In: PetroVietnam, Ho Chi Minh City, Vietnam, Mar 1–3, 1995 1995. Society of Petroleum Engineers, pp 1–8. doi:10.2118/30157-MS

  • Takanashi M, Nishizawa O, Kanagawa K, Yasunaga K (2001) Laboratory measurements of elastic anisotropy parameters for the exposed crustal rocks from the Hidaka Metamorphic Belt, Central Hokkaido, Japan. Geophys J Int 145(1):33–47

    Article  Google Scholar 

  • Takemura T, Oda M (2005) Changes in crack density and wave velocity in association with crack growth in triaxial tests of Inada granite. J Geophys Res 110:B05401. doi:10.1029/2004JB003395

    Google Scholar 

  • Tester JW, Anderson BJ, Batchelor AS, Blackwell DD, DiPippo R, Drake EM, Garnish J, Livesay B, Moore MC, Nichols K, Petty S, Toksoz MN, Veatch RWJ (2006) The future of geothermal energy: Impact of enhanced geothermal systems (EGS) on the United States in the 21st Century. Massachusetts Institute of Technology

  • Thomsen L (1986) Weak Elastic-Anisotropy. Geophysics 51(10):1954–1966. doi:10.1190/1.1442051

    Article  Google Scholar 

  • Vavryčuk V, Boušková A (2009) S-wave splitting from records of local micro-earthquakes in West Bohemia/Vogtland: an indicator of complex crustal anisotropy. Stud Geophys Geod 52(4):631–650. doi:10.1007/s11200-008-0041-z

    Article  Google Scholar 

  • Vestrum RW (1994) Group and phase-velocity inversions for the general anisotropic stiffness tensor. University of Calgary, Calgary

    Google Scholar 

  • Vestrum R, Lawton D (2010) Reflection point sideslip and smear in imaging below dip** anisotropic media. Geophys Prospect 58(4):541–548. doi:10.1111/j.1365-2478.2009.00849.x

    Article  Google Scholar 

  • Vestrum RW, Lawton DC, Schmid R (1999) Imaging structures below dip** TI media. Geophysics 64(4):1239–1246. doi:10.1190/1.1444630

    Article  Google Scholar 

  • Vilhelm J, Rudajev V, Zivor R, Lokajicek T, Pros Z (2010) Influence of crack distribution of rocks on P-wave velocity anisotropy––a laboratory and field scale study. Geophys Prospect 58(6):1099–1110. doi:10.1111/j.1365-2478.2010.00875.x

    Google Scholar 

  • Walsh JB (1965) The effects of cracks on the compressibility of rock. J Geophys Res 70:381–389

    Article  Google Scholar 

  • Walsh NJ (2013) Geochemistry and geochronology of the Precambrian basement domains in the vicinity of Fort McMurray, Alberta: a geothermal perspective. University of Alberta, Edmonton

    Google Scholar 

  • Wang J, Zhao DP (2009) P-wave anisotropic tomography of the crust and upper mantle under Hokkaido, Japan. Tectonophysics 469(1–4):137–149. doi:10.1016/j.tecto.2009.02.005

    Article  Google Scholar 

  • Wong RCK, Schmitt DR, Collis D, Gautam R (2008) Inherent transversely isotropic elastic parameters of over-consolidated shale measured by ultrasonic waves and their comparison with static and acoustic in situ log measurements. J Geophys Eng 5(1):103–117. doi:10.1088/1742-2132/5/1/011

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Lucas Duerksen and Randolf Kofman for their assistance in setting up the laboratory equipment in the Rock Physics Laboratory of the Experimental Geophysics Group (EGG) at the University of Alberta, and Gautier Njiekak for his assistance in analyzing the thin sections. Core samples were generously on loan from the Alberta Core Research Centre in Calgary. This research was sponsored by funding from Natural Sciences and Engineering Research Council of Canada (NSERC), the Canada Research Chairs Program, and the Geothermal Theme of the Helmholtz-Alberta Initiative (HAI). We would also like to thank our reviewer for insightful and observant feedback.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judith Chan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chan, J., Schmitt, D.R. Elastic Anisotropy of a Metamorphic Rock Sample of the Canadian Shield in Northeastern Alberta. Rock Mech Rock Eng 48, 1369–1385 (2015). https://doi.org/10.1007/s00603-014-0664-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-014-0664-z

Keywords

Navigation