Log in

Microfluidic blood-plasma separation chip using channel size filtration effect

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

Blood separation is an essential first step when performing blood tests for clinical diagnosis purposes. Such tests are increasingly performed using microfluidic systems due to their rapid response time, low cost and potential for automated operation. This study proposes a simple microfluidic chip comprising a straight microchannel and a grating-type plasma filtration microchannel for the automatic separation of plasma from whole human blood for further biochemical detection. In the proposed device, the whole blood sample is introduced into the microfluidic chip by means of capillary forces and the plasma is then extracted from the whole blood via a size exclusion effect induced in the plasma filtration channel. The experimental results show that the plasma is extracted with an average flow rate of 0.01 μL/s. Moreover, the plasma collected in the outlet reservoirs has a residual cell concentration of less than 0.1%. The feasibility of the proposed device for clinical applications is demonstrated by means of creatinine detection tests with sample concentrations ranging from 0.11 to 1.78 mg/dL (10–160 μM) and prothrombin time (PT) tests with blood samples drawn from 20 healthy individuals. The experimental results show that the device has a detection sensitivity and degree of linearity of 12.68 count/μM and 95.38%, respectively. Moreover, the mean coagulation time in the PT tests is equal to approximately 13.3 s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Chen X, Cui DF, Liu CC, Li H (2007) Microfluidic chip for blood cell separation and collection based on crossflow filtration. Sens Actuator B 130:216–221

    Article  Google Scholar 

  • Crowley TA, Pizziconi V (2005) Isolation of plasma from whole blood using planar microfilters for lab-on-a-chip applications. Lab Chip 5:922–929

    Article  Google Scholar 

  • Dimov IK, Basabe-Desmonts L, Garcia-Cordero JL, Ross BM, Ricco AJ, Lee LP (2011) Stand-alone self-powered integrated microfluidic blood analysis system (SIMBAS). Lab Chip 11:845–850

    Article  Google Scholar 

  • Fan R, Vermesh O, Srivastava A, Yen BKH, Qin L, Ahmad H, Kwong GA, Liu CC, Gould J, Hood L, Heath JR (2008) Integrated barcode chips for rapid, multiplexed analysis of proteins in microliter quantities of blood. Nat Biotechnol 26:1373–1378

    Article  Google Scholar 

  • Haeberle S, Brenner T, Zengerle R, Ducŕee J (2006) Centrifugal extraction of plasma from whole blood on a rotating disk. Lab Chip 6:776–781

    Article  Google Scholar 

  • Huang Y, Joo S, Duhon M, Heller M, Wallace B, Xu X (2002) Dielectrophoretic cell separation and gene expression profiling on microelectronic chip arrays. Anal Chem 74:3362–3371

    Article  Google Scholar 

  • Huang LR, Cox EC, Austin RH, Sturm JC (2004) Continuous particle separation through deterministic lateral displacement. Science 304:987–990

    Article  Google Scholar 

  • Inglis DW, Riehn R, Austin RH, Sturm JC (2004) Continuous microfluidic immunomagnetic cell separation. Appl Phys Lett 85:5093–5095

    Article  Google Scholar 

  • Jäggi RD, Sandoz R, Effenhauser CS (2007) Microfluidic depletion of red blood cells from whole blood in high-aspect-ratio microchannels. Microfluid Nanofluid 3:47–53

    Article  Google Scholar 

  • Jung J, Han KH (2008) Lateral-driven continuous magnetophoretic separation of blood cells. Appl Phys Lett 93:223902

    Article  Google Scholar 

  • Kim JH, Woenker T, Adamec J, Regnier FE (2013) Simple, miniaturized blood plasma extraction method. Anal Chem 85:11501–11508

    Article  Google Scholar 

  • Kuo JN, Li BS (2014) Lab-on-CD microfluidic platform for rapid separation and mixing of plasma from whole blood. Biomed Microdevices 16:549–558

    Article  Google Scholar 

  • Kuo JN, Zhan YH (2015) Microfluidic chip for rapid and automatic extraction of plasma from whole human blood. Microsyst Technol 21:255–261

    Article  Google Scholar 

  • Lenshof A, Ahmad-Tajudin A, Jaras K, Sward-Nilsson AM, Aberg L, Gr Marko-Varga, Malm J, Lilja H, Laurell T (2009) Acoustic whole blood plasmapheresis chip for prostate specific antigen microarray diagnostics. Anal Chem 81(15):6030–6037

    Article  Google Scholar 

  • Lin CH, Lee GB, Lin YH, Chang GL (2001) A fast prototy** process for fabrication of microfluidic systems on soda-lime glass. J Micromech Microeng 11:726–732

    Article  Google Scholar 

  • Mach AJ, Carlo DD (2010) Continuous scalable blood filtration device using inertial microfluidics. Biotechnol Bioeng 107:302–311

    Article  Google Scholar 

  • Moorthy J, Beebe DJ (2003) In situ fabricated porous filters for microsystems. Lab Chip 3:62–66

    Article  Google Scholar 

  • Nakashima Y, Hata S, Yasuda T (2010) Blood plasma separation and extraction from a minute amount of blood using dielectrophoretic and capillary forces. Sens Actuators B 145:561–569

    Article  Google Scholar 

  • Petersson F, Aberg L, Sward-Nilsson AM, Laurell T (2007) Free flow acoustophoresis: microfluidic-based mode of particle and cell separation. Anal Chem 79:5117–5123

    Article  Google Scholar 

  • Smistrup K, Hansen O, Bruus H, Hansen MF (2005) Magnetic separation in microfluidic systems using microfabricated electromagnets-experiments and simulations. J Magn Magn Mater 293:597–604

    Article  Google Scholar 

  • Songjaroen T, Dungchai W, Chailapakul O, Henry CS, Laiwattanapaisal W (2012) Blood separation on microfluidic paper-based analytical devices. Lab Chip 12:3392–3398

    Article  Google Scholar 

  • Szydzik C, Khoshmanesh K, Mitchell A, Karnutsch C (2015) Microfluidic platform for separation and extraction of plasma from whole blood using dielectrophoresis. Biomicrofluidics 9(6):064120

    Article  Google Scholar 

  • Tachi T, Kaji N, Tokeshi M, Baba Y (2009) Simultaneous separation, metering, and dilution of plasma from human whole blood in a microfluidic system. Anal Chem 81:3194–3198

    Article  Google Scholar 

  • Thorslund S, Klett O, Nikolajeff F, Markides K, Bergquist J (2006) A hybrid poly(dimethylsiloxane) microsystem for on-chip whole blood filtration optimized for steroid screening. Biomed Microdevices 8:73–79

    Article  Google Scholar 

  • Toner M, Irimia D (2005) Blood-on-a-chip. Annu Rev Biomed Eng 7:77–103

    Article  Google Scholar 

  • Tripathi S, Kumar YVBV, Prabhakar A, Joshi SS, Agrawal A (2015) Passive blood plasma separation at the microscale: a review of design principles and microdevices. J Micromech Microeng 25:083001

    Article  Google Scholar 

  • VanDelinder V, Groisman A (2006) Separation of plasma from whole human blood in a continuous cross-flow in a molded microfluidic device. Anal Chem 78:3765–3771

    Article  Google Scholar 

  • Voldman J, Gray ML, Toner M, Schmidt MA (2002) A microfabrication-based dynamic array cytometer. Anal Chem 74:3984–3990

    Article  Google Scholar 

  • Yang S, Undar A, Zahn JD (2006) A microfluidic device for continuous, real time blood plasma separation. Lab Chip 6:871–880

    Article  Google Scholar 

  • Yang X, Forouzan O, Brown TP, Shevkoplyas SS (2012) Integrated separation of blood plasma from whole blood for microfluidic paper-based analytical devices. Lab Chip 12:274–280

    Article  Google Scholar 

  • Zhang J, Guo Q, Liu M, Yang J (2008) A lab-on-CD prototype for high-speed blood separation. J Micromech Microeng 18:125025

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support provided to this study by the National Science Council of Taiwan under Grant no. NSC 104-2221-E-150-056. In addition, the access provided to fabrication equipment by the Common Lab for Micro/Nano Science and Technology of National Formosa University is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ju-Nan Kuo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuo, JN., Lin, BY. Microfluidic blood-plasma separation chip using channel size filtration effect. Microsyst Technol 24, 2063–2070 (2018). https://doi.org/10.1007/s00542-017-3607-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-017-3607-2

Navigation