Log in

Zircon U–Pb and geochemistry of the north Shahrekord metamorphosed felsic rocks: implications for the Ediacaran–Cambrian tectonic setting of Iran

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The basement felsic igneous rocks associated with the continental tectonic zones of Iran are key elements that contain a well-preserved geological record of the protracted evolutionary history of the North Gondwana margin within the Ediacaran–Cambrian timespan. Two distinct Ediacaran–Cambrian magmatic pulses are recognized in the North Shahrekord Metamorphic Complex (NSMC) as a part of the Sanandaj–Sirjan Zone (SaSZ) in Iran. The NSMC is defined by a Pan-African/Cadomian basement dominated by two felsic suites of granitic gneisses and meta-granitoids, which have experienced mylonitization and high-grade metamorphism. Zircon U–Pb dating displays magmatic crystallization ages of 555 ± 7 Ma and 561 ± 10 Ma corresponding to the Late Neoproterozoic (Ediacaran) for the granitic gneisses. Geochemically, the gneisses are differentiated as I-type granites and subalkaline in composition, and similar to the mylonitic meta-granitoids with characteristics similar to those of both I-type and A-type characters, have an affinity to Cordilleran granites. Considering the enrichment in LILEs (e.g., Rb, Th, and U), depletion in HFSEs (e.g., Nb, Ta, and Ti), high ratios of Th/La and Th/Zr, low Nb/U ratio, Y/Nb ratio > 1.2, and low Mg# reported from both felsic rocks and high initial 87Sr/86Sr ratio (0.71088 to 0.74514), negative ƐNd(555 Ma) value (− 3.7 to − 2.3) and Nd model age (TDM2 = 1.40 to 1.51 Ga) reported from the granitic gneisses, a protolith probably derived from partial melting of a common pre-existing felsic crustal source is plausible. Available data indicate that the source magma of the granitic gneisses may have been generated within the Ediacaran convergent margin environment during the subduction of proto-Tethys under north Gondwana before thinning lithospheric and formation of the Middle Cambrian meta-granitoids, as with other peri-Gondwana terranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abbo A, Avigad D, Gerdes A, Güngör T (2015) Cadomian basement and Paleozoic to Triassic siliciclastics of the Taurides (Karacahisar dome, south-central Turkey): paleogeographic constraints from U-Pb–Hf in zircons. Lithos 227:122–139

    Article  Google Scholar 

  • Abbo A, Avigad D, Gerdes A, Morag N, Vainer S (2020) Cadomian (ca. 550 Ma) magmatic and thermal imprint on the North Arabian-Nubian Shield (south and central Israel): new age and isotopic constraints. Precambrian Research, 346, p.105804

  • Agard P, Omrani J, Jolivet L, Mouthereau F (2005) Convergence history across Zagros (Iran): constraints from collisional and earlier deformation. Int J Earth Sci 94(3):401–419

    Article  Google Scholar 

  • Arth JG (1979) Some trace elements in trondhjemites-their implications to magma genesis and paleotectonic setting. In Developments in Petrology (Vol 6, pp 123–132). Elsevier, Amsterdam

  • Ashtiani RJ, Hassanzadeh J, Schmitt AK, Sudo M, Timmerman M, Günter C, Sobel E (2020) Geochronology and geochemistry of subducted Cadomian continental basement in central Iran: decompressional anatexis along the Jurassic Neotethys margin. Gondwana Res 82:354–366

    Article  Google Scholar 

  • Azizi H, Chung SL, Tanaka T, Asahara Y (2011) Isotopic dating of the Khoy metamorphic complex (KMC), northwestern Iran: a significant revision of the formation age and magma source. Precambr Res 185(3–4):87–94

    Article  Google Scholar 

  • Babaahmadi A, Mohajjel M, Eftekhari A, Davoudian AR (2012) An investigation into the fault patterns in the Chadegan region, west Iran: Evidence for dextral brittle transpressional tectonics in the Sanandaj-Sirjan Zone. J Asian Earth Sci 43(1):77–88

    Article  Google Scholar 

  • Babaahmadi A, Davoudian AR, Mohajjel M (2021) Transpression in the Sanandaj-Sirjan Zone (Zagros Orogen, Iran) during the Jurassic and Early Cretaceous: Evidence from the North Shahrekord Shear Zone. J Struct Geol 149:104387

    Article  Google Scholar 

  • Badr A, Davoudian AR, Shabanian N, Azizi H, Asahara Y, Neubauer F, Dong Y, Yamamoto K (2018) A-and I-type metagranites from the North Shahrekord Metamorphic Complex, Iran: Evidence for Early Paleozoic post-collisional magmatism. Lithos 300:86–104

    Article  Google Scholar 

  • Badr A, Davoudian AR, Shabanian N, Azizi H (2019) Age dating and thermometry of the zircon crystallization of the metagranites from the North Shahrekord metamorphic complex. Sci Q J Geosci 28(112):109–118

    Google Scholar 

  • Bagherzadeh RM, Karimpour MH, Farmer GL, Stern CR, Santos JF, Rahimi B, Shahri MH (2015) U–Pb zircon geochronology, petrochemical and Sr–Nd isotopic characteristic of Late Neoproterozoic granitoid of the Bornaward complex (Bardaskan-NE Iran). J Asian Earth Sci 111:54–71. https://doi.org/10.1016/j.jseaes.2015.05.019

    Article  Google Scholar 

  • Bendokht M, Shabanian N, Davoudian AR, Dong Y, Cottle JM, Johnson TA (2021) Geochronology and geochemistry of Cadomian basement orthogneisses from the Tutak metamorphic Complex, Sanandaj-Sirjan Zone. Iran Precambrian Res 362:106288

    Article  Google Scholar 

  • Beyarslan M, Lın YC, Bingöl AF, Chung SL (2016) Zircon U-Pb age and geochemical constraints on the origin and tectonic implication of Cadomian (Ediacaran-Early Cambrian) magmatism in SE Turkey. J Asian Earth Sci 130:223–238

    Article  Google Scholar 

  • Boehnke P, Watson EB, Trail D, Harrison TM, Schmitt AK (2013) Zircon saturation re-revisited. Chem Geol 351:324–334

    Article  Google Scholar 

  • Bonin B (2007) A-type granites and related rocks: evolution of a concept, problems and prospects. Lithos 97(1–2):1–29

    Article  Google Scholar 

  • Boynton VW (1984) Cosmochemistry of the rare earth elements: meteorite studies. In: Henderson, P. (Ed.) Rare Earth Element Geochemistry. Elsevier Science, pp. 63–114. https://doi.org/10.1016/B978-0-444-42148-7.50008-3

  • Candan O, Koralay OE, Topuz G, Oberhänsli R, Fritz H, Collins AS, Chen F (2016) Late Neoproterozoic gabbro emplacement followed by early Cambrian eclogite-facies metamorphism in the Menderes Massif (W. Turkey): implications on the final assembly of Gondwana. Gondwana Res 34:158–173

    Article  Google Scholar 

  • Cawood PA, Martin EL, Murphy JB, Pisarevsky SA (2021) Gondwana’s interlinked peripheral orogens. Earth Planet Sci Lett 568:117057

    Article  Google Scholar 

  • Clemens JD, Darbyshire DPF, Flinders J (2009) Sources of post-orogenic calcalkaline magmas: the Arrochar and Garabal Hill-Glen Fyne complexes. Scotland Lithos 112(3–4):524–542

    Article  Google Scholar 

  • Collins WJ, Beams SD, White AJR, Chappell BW (1982) Nature and origin of A-type granites with particular reference to southeastern Australia. Contrib Miner Petrol 80(2):189–200

    Article  Google Scholar 

  • Corfu F, Hanchar JM, Hoskin PW, Kinny P (2003) Atlas of zircon textures. Rev Mineral Geochem 53(1):469–500

    Article  Google Scholar 

  • Daneshvar N, Maanijou M, Azizi H, Asahara Y (2019) Petrogenesis and geodynamic implications of an Ediacaran (550 Ma) granite complex (metagranites), southwestern Saqqez, northwest Iran. J Geodyn 132:101669

    Article  Google Scholar 

  • Davoudian AR (2010) Mineral chemistry and PT conditions of crystallization of the granitoid plutons in the Zayandeh-Rood River area, shear zone of north of Shahrekord with special reference to magmatic epidote. Iran J Crystallogr Mineral 8:497–512 ((in Persian with an English abstract))

    Google Scholar 

  • Davoudian AR, Genser J, Dachs E, Shabanian N (2008) Petrology of eclogites from north of Shahrekord, Sanandaj-Sirjan Zone. Iran Mineral Petrol 92(3–4):393–413

    Article  Google Scholar 

  • Davoudian AR, Genser J, Neubauer F, Shabanian N (2016) 40Ar/39Ar mineral ages of eclogites from North Shahrekord in the Sanandaj-Sirjan Zone, Iran: Implications for the tectonic evolution of Zagros orogen. Gondwana Res 37:216–240

    Article  Google Scholar 

  • Davoudian AR, Heidari A, Shabanian N, Moradi A (2017) Mineralogy and distinguishing protolith of gneisses from Northern part of Zayandeh-Rud dam lake in North Shahrekord (Sanandaj-Sirjan Zone). Iran J Crystallogr Mineral 25(1):139–152 ((in Persian with an English abstract))

    Google Scholar 

  • Djouka-Fonkwé ML, Schulz B, Schüssler U, Tchouankoué JP, Nzolang C (2008) Geochemistry of the Bafoussam Pan-African I-and S-type granitoids in western Cameroon. J Afr Earth Sci 50(2–4):148–167

    Article  Google Scholar 

  • Dong YC, Wang M, Fan JJ, **e CM, Yu YP, Hao YJ (2019) Late Jurassic I-type rhyolites from the Duobuza region, north-central Tibet: evidence for the occurrence of juvenile lower crust and crustal growth in the Southern Qiantang Terrane. Int Geol Rev 62(11):1450–1466

    Article  Google Scholar 

  • Eby GN (1992) Chemical subdivision of the A-type granitoids: petrogenetic and tectonic implications. Geology 20(7):641–644

    Article  Google Scholar 

  • Eby GN (2006) Distinctions between A-type granites and petrogenetic pathways. In: Dall’Agnol, R., et al. (Ed.), Symposium on Magmatism, Crustal Evolution, and Metallogenesis of the Amozonian Craton, Abstract Volume and Field Trips Guide. Belem, PRONEX-UFPA/SBG-NO, 48

  • El Dien HG, Li ZX, Anbar MA, Doucet LS, Murphy JB, Evans NJ, **a XP, Li J (2021) Two-stage crustal growth in the Arabian-Nubian shield: Initial arc accretion followed by plume-induced crustal reworking. Precambr Res 359:106211

    Article  Google Scholar 

  • Emami SN (2008) Petrological investigations with emphasize on the alteration zones and evaluation of their environmental effects in the volcanic terrain of the north of Shahrekord, Unpublished Ph.D. Thesis, Esfahan University, (in Persian)

  • Frost BR, Barnes CG, Collins WJ, Arculus RJ, Ellis DJ, Frost CD (2001) A geochemical classification for granitic rocks. J Petrol 42(11):2033–2048

    Article  Google Scholar 

  • Ghasemi A, Haji Hosseini A, Hosseini M (2005) Geological map of Chadegan. Geol Surv Iran, Scale 1:100000

    Google Scholar 

  • Green TH (1995) Significance of Nb/Ta as an indicator of geochemical processes in the crust-mantle system. Chem Geol 120(3–4):347–359. https://doi.org/10.1016/0009-2541(94)00145-X

    Article  Google Scholar 

  • Gürsu S (2016) A new petrogenetic model for meta-granitic rocks in the central and southern Menderes Massif–W Turkey: Implications for Cadomian crustal evolution within the Pan-African mega-cycle. Precambr Res 275:450–470

    Article  Google Scholar 

  • Hashemi M, Shabanian N, Davoudian A, Azizi H (2020) Investigation of temperature variations and deformation stages with respect to microstructures and mineral paragenesis in paragneisses of northern Shahrekord. Sci Q J Geosci Ences 29(114):165–174

    Google Scholar 

  • Hawkesworth CJ, Rogers NW, Van Calsteren PWC, Menzies MA (1984) Mantle enrichment processes. Nature 311(5984):331–335

    Article  Google Scholar 

  • He H, Li Y, Wang C, Han Z, Ma P, **ao S (2019) Petrogenesis and tectonic implications of Late Cretaceous highly fractionated I-type granites from the Qiantang block, central Tibet. J Asian Earth Sci 176:337–352

    Article  Google Scholar 

  • Henriques SBA, Neiva AM, Tajčmanová L, Dunning GR (2017) Cadomian magmatism and metamorphism at the Ossa Morena/Central Iberian zone boundary, Iberian Massif, Central Portugal: Geochemistry and P-T constraints of the Sardoal Complex. Lithos 268:131–148

    Article  Google Scholar 

  • Hoskin PW, Schaltegger U (2003) The composition of zircon and igneous and metamorphic petrogenesis. Rev Mineral Geochem 53(1):27–62

    Article  Google Scholar 

  • Hosseini SM, Davoudian Dehkordi AR, Shabanian Boroujeni N, Azizi H (2019) Mineralogy, geochemistry, and lithology of amphibolites northeast of Yan-Cheshmeh, southeast of Lake Zayandehrood. Iran J Crystallogr Mineral 27(1):19–30

    Article  Google Scholar 

  • Huang XL, Xu YG, Lan JB, Yang QJ, Luo ZY (2009) Neoproterozoic adakitic rocks from Mopanshan in the western Yangtze Craton: Partial melts of a thickened lower crust. Lithos 112(3–4):367–381

    Article  Google Scholar 

  • Ilnicki S, Szczepański J, Pin C (2013) From back-arc to rifted margin: Geochemical and Nd isotopic records in Neoproterozoic? -Cambrian metabasites of the Bystrzyckie and Orlickie Mountains (Sudetes, SW Poland). Gondwana Res 23(3):1104–1121

    Article  Google Scholar 

  • Jiang N, Zhang S, Zhou W, Liu Y (2009) Origin of a Mesozoic granite with A-type characteristics from the North China craton: highly fractionated from I-type magmas? Contrib Miner Petrol 158(1):113–130

    Article  Google Scholar 

  • Jiang YH, Zhao P, Zhou Q, Liao SY, ** GD (2011) Petrogenesis and tectonic implications of Early Cretaceous S-and A-type granites in the northwest of the Gan-Hang rift. SE China Lithos 121(1–4):55–73

    Article  Google Scholar 

  • Jiang H, Jiang SY, Li WQ, Zhao KD, Peng NJ (2018) Highly fractionated Jurassic I-type granites and related tungsten mineralization in the Shirenzhang deposit, northern Guangdong, South China: Evidence from cassiterite and zircon U-Pb ages, geochemistry and Sr-Nd-Pb-Hf isotopes. Lithos 312:186–203

    Article  Google Scholar 

  • Karsli O, Aydin F, Uysal I, Dokuz A, Kumral M, Kandemir R, Budakoglu M, Ketenci M (2018) Latest Cretaceous “A2-type” granites in the Sakarya Zone, NE Turkey: Partial melting of mafic lower crust in response to roll-back of Neo-Tethyan oceanic lithosphere. Lithos 302–303:312–328

    Article  Google Scholar 

  • Keto LS, Jacobsen SB (1987) Nd and Sr isotopic variations of Early Paleozoic oceans. Earth Planet Sci Lett 84(1):27–41

    Article  Google Scholar 

  • Kocak K, Kurt H, Zedef V, Ferré EC (2007) Characteristics of the amphibolites from Nigde metamorphics (Central Turkey), deduced from whole rock and mineral chemistry. Geochem J 41(4):241–257. https://doi.org/10.2343/geochemj.41.241

    Article  Google Scholar 

  • Kouchi Y, Obara H, Fujimoto T, Orihashi Y, Haruta Y, Yamamoto K (2015) Zircon U–Pb dating by 213 nm Nd. YAG laser ablation inductively coupled plasma mass spectrometry. Optimization of the analytical condition to use NIST SRM 610 for Pb/U fractionation correction. Chikyu Kagaku, 49(1), pp.19–35

  • Leat PT, Jackson SE, Thorpe RS, Stillman CJ (1986) Geochemistry of bimodal basalt-subalkaline/peralkaline rhyolite provinces within the Southern British Caledonides. J Geol Soc 143(2):259–273

    Article  Google Scholar 

  • Liegeois JP, Navez J, Hertogen J, Black R (1998) Contrasting origin of post-collisional high-K calc-alkaline and shoshonitic versus alkaline and peralkaline granitoids. The Use of Sliding Normalization Lithos 45(1–4):1–28

    Google Scholar 

  • Ludwig KR (2009) Isoplot 4.1. A geochronogical toolkit for Microsoft Excel

  • Le Maitre RW (1989) A classification of igneous rocks and glossary of terms. In Recommendations of the international union of geological sciences subcommission on the systematics of igneous rocks, 193

  • Malek-Mahmoudi MF, Davoudian AR, Shabanian N, Azizi H, Asahara Y, Neubauer F, Dong Y (2017) Geochemistry of metabasites from the north Shahrekord metamorphic complex, Sanandaj-Sirjan zone: Geodynamic implications for the Pan-African basement in Iran. Precambr Res 293:56–72

    Article  Google Scholar 

  • McCulloch MT, Chappell BW (1982) Nd isotopic characteristics of S-and I-type granites. Earth Planet Sci Lett 58(1):51–64

    Article  Google Scholar 

  • McDonough WF, Sun SS (1995) The composition of the Earth. Chem Geol 120(3–4):223–253

    Article  Google Scholar 

  • Mezger K, Krogstad EJ (1997) Interpretation of discordant U-Pb zircon ages: An evaluation. J Metamorph Geol 15(1):127–140

    Article  Google Scholar 

  • Moghadam HS, Li XH, Santos JF, Stern RJ, Griffin WL, Ghorbani G, Sarebani N (2017) Neoproterozoic magmatic flare-up along the N. margin of Gondwana: the Taknar complex, NE Iran. Earth Planet Sci Lett 474:83–96

    Article  Google Scholar 

  • Moghadam HS, Li QL, Griffin WL, Stern RJ, Ishizuka O, Henry H, Lucci F, O’Reilly SY, Ghorbani G (2020) Repeated magmatic buildup and deep “hot zones” in continental evolution: the Cadomian crust of Iran. Earth Planet Sci Lett 531:115989

    Article  Google Scholar 

  • Moradi A, Shabanian N, Davoudian AR, Azizi H, Santos JF, Asahara Y (2022) Geochronology and petrogenesis of the Late Neoproterozoic granitic gneisses of Golpayegan metamorphic complex: a new respect for Cadomian crust in the Sanandaj-Sirjan zone. Iran Int Geol Rev 64(10):1450–1473

    Article  Google Scholar 

  • Moreno JA, Molina JF, Montero P, Anbar MA, Scarrow JH, Cambeses A, Bea F (2014) Unraveling sources of A-type magmas in juvenile continental crust: constraints from compositionally diverse Ediacaran post-collisional granitoids in the Katerina Ring Complex, southern Sinai. Egypt Lithos 192:56–85

    Article  Google Scholar 

  • Moreno JA, Molina JF, Bea F, Anbar MA, Montero P (2016) Th-REE-and Nb-Ta-accessory minerals in post-collisional Ediacaran felsic rocks from the Katerina Ring Complex (S. Sinai, Egypt): An assessment for the fractionation of Y/Nb, Th/Nb, La/Nb and Ce/Pb in highly evolved A-type granites. Lithos 258:173–196

    Article  Google Scholar 

  • Moreno JA, Dahlquist JA, Cámera MMM, Alasino PH, Larrovere MA, Basei MA, Galindo C, Zandomeni PS, Rocher S (2020) Geochronology and geochemistry of the Tabaquito batholith (Frontal Cordillera, Argentina): geodynamic implications and temporal correlations in the SW Gondwana margin. J Geol Soc 177(3):455–474

    Article  Google Scholar 

  • Murphy JB, Nance RD (1991) Supercontinent model for the contrasting character of Late Proterozoic orogenic belts. Geology 19(5):469–472

    Article  Google Scholar 

  • Mutele, L. and Misra, S., 2021. Geochemical evolution of the Lebowa Granite Pluton in western Bushveld Igneous Complex, South Africa: More insight into the evolution of bimodal A-type granitoid. Geological Journal, in press.

  • Nagudi B, Koeberl C, Kurat G (2003) Petrography and geochemistry of the Singo granite, Uganda, and implications for its origin. J Afr Earth Sci 36(1–2):73–87

    Article  Google Scholar 

  • Niu PP, Jiang SY (2020) Petrogenesis of the late mesozoic qi**feng granite complex in the tongbai orogen: geochronological, geochemical and Sr-Nd-Pb-Hf isotope evidence. Lithos 356:105290

    Article  Google Scholar 

  • Nouri F, Davoudian AR, Allen MB, Azizi H, Asahara Y, Anma R, Shabanian N, Tsuboi M, Khodami M (2021) Early Cambrian highly fractionated granite, Central Iran: Evidence for drifting of northern Gondwana and the evolution of the Proto-Tethys Ocean. Precambr Res 362:106291. https://doi.org/10.1016/j.precamres.2021.106291

    Article  Google Scholar 

  • Nouri F, Davoudian AR, Shabanian N, Allen MB, Asahara Y, Azizi H, Anma R, Khodami M, Tsuboi M (2022) Tectonic transition from Ediacaran continental arc to early Cambrian rift in the NE Ardakan region, central Iran: constraints from geochronology and geochemistry of magmatic rocks. J Asian Earth Sci 224:105011

    Article  Google Scholar 

  • Nutman AP, Mohajjel M, Bennett VC, Fergusson CL (2014) Gondwanan Eoarchean-Neoproterozoic ancient crustal material in Iran and Turkey: zircon U-Pb–Hf isotopic evidence. Can J Earth Sci 51(3):272–285

    Article  Google Scholar 

  • Othman DB, Polvé M, Allègre CJ (1984) Nd—Sr isotopic composition of granulites and constraints on the evolution of the lower continental crust. Nature 307(5951):510–515

    Article  Google Scholar 

  • Passchier, C.W., Myers, J.S., and Kröner, A., 1990. Field Geology of High-Grade Gneiss Terranes: Berlin, Springer-Verlag, 150 p., https:// doi .org /10 .1007 /978 -3 -642 -76013 -6.

  • Passchier CW, Trouw RAJ (2005) Microtectonics. Springer, Berlin Heidelberg

    Google Scholar 

  • Patiño Douce AE (1997) Generation of metaluminous A-type granites by low-pressure melting of calc-alkaline granitoids. Geology 25(8):743–746

    Article  Google Scholar 

  • Pearce JA, Harris NB, Tindle AG (1984) Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J Petrol 25(4):956–983. https://doi.org/10.1093/petrology/25.4.956

    Article  Google Scholar 

  • Pryer LL (1993) Microstructures in feldspars from a major crustal thrust zone: the Grenville Front, Ontario. Can J Struct Geol 15(1):21–36

    Article  Google Scholar 

  • Rapp RP, Watson EB (1995) Dehydration melting of metabasalts at 8–32 kbar: implications for continental growth and crust-mantle recycling. J Petrol 36(4):891–931

    Article  Google Scholar 

  • Ren L, Liang H, Bao Z, Zhang J, Li K, Huang W (2018) Genesis of the high Sr/Y rocks in Qinling orogenic belt, central China. Lithos 314:337–349

    Article  Google Scholar 

  • Riyahi Samani F, Shabanian Boroujeni N, Davoudian Dehkordi AR (2017) Geochemistry and tectonic setting of granite-gneisses from Abadchi, north of Shahrekord. Iran J Crystallogr Mineral 26(1):195–208

    Google Scholar 

  • Riyahi Samani F, Shabanian Boroujeni N, Davoudian Dehkordi A, Bakhtiari B (2019) Fractal analysis of quartz grain boundary in the gneissic granite of Abadchi, North of Shahrekord. Iran J Crystallogr Mineral 27(2):401–410

    Article  Google Scholar 

  • Rollinson HR (1993) Using geochemical data: evaluation, presentation, interpretation. Longman, London, p 352

    Google Scholar 

  • Rossetti F, Nozaem R, Lucci F, Vignaroli G, Gerdes A, Nasrabadi M, Theye T (2015) Tectonic setting and geochronology of the Cadomian (Ediacaran-Cambrian) magmatism in central Iran, Kuh-e-Sarhangi region (NW Lut Block). J Asian Earth Sci 102:24–44. https://doi.org/10.1016/j.jseaes.2014.07.034

    Article  Google Scholar 

  • Rudnick RL, Fountain DM (1995) Nature and composition of the continental crust: a lower crustal perspective. Rev Geophys 33:267–309. https://doi.org/10.1029/95RG01302

    Article  Google Scholar 

  • Rutter MJ, Wyllie PJ (1988) Melting of vapour-absent tonalite at 10 kbar to simulate dehydration–melting in the deep crust. Nature 331(6152):159–160

    Article  Google Scholar 

  • Sakyi PA, Su BX, Anum S, Kwayisi D, Dampare SB, Anani CY, Nude PM (2014) New zircon U-Pb ages for erratic emplacement of 2213–2130 Ma Paleoproterozoic calc-alkaline I-type granitoid rocks in the Lawra Volcanic Belt of Northwestern Ghana, West Africa. Precambr Res 254:149–168

    Article  Google Scholar 

  • Schandl ES, Gorton MP (2002) Application of high field strength elements to discriminate tectonic settings in VMS environments. Econ Geol 97(3):629–642. https://doi.org/10.2113/gsecongeo.97.3.629

    Article  Google Scholar 

  • Sepidbar, F., Moghadam, H.S., Li, C., Stern, R.J., Jiantang, P. and Vesali, Y., 2020. Cadomian magmatic rocks from Zarand (SE Iran) formed in a Retro-Arc Basin. Lithos, 366–367.

  • Shabanian N, Davoudian AR, Dong Y, Liu X (2018) U-Pb zircon dating, geochemistry and Sr-Nd-Pb isotopic ratios from Azna-Dorud Cadomian metagranites, Sanandaj-Sirjan zone of western Iran. Precambr Res 306:41–60. https://doi.org/10.1016/j.precamres.2017.12.037

    Article  Google Scholar 

  • Siebel W, Raschka H, Irber W, Kreuzer H, Lenz KL, Höhndorf A, Wendt I (1997) Early Palaeozoic acid magmatism in the Saxothuringian belt: New insights from a geochemical and isotopic study of orthogneisses and metavolcanic rocks from the Fichtelgebirge, SE Germany. J Petrol 38(2):203–230. https://doi.org/10.1093/petroj/38.2.203

    Article  Google Scholar 

  • Simpson C (1985) Deformation of granitic rocks across the brittle-ductile transition. J Struct Geol 7(5):503–511

    Article  Google Scholar 

  • Stacey JT, Kramers (1975) Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet Sci Lett 26(2):207–221

    Article  Google Scholar 

  • Stampfli GM, von Raumer JF, Borel GD (2002) Paleozoic evolution of pre-Variscan terranes: From Gondwana to the Variscan collision. In: Martínez Catalán JR, Hatcher RD, Arenas R, Díaz García F (eds), Variscan-Appalachian Dynamics: The Building of the Late Paleozoic Basement: Boulder. Colorado. Geological Society of America Special Paper. (pp. 263–280). https://doi.org/10.1130/0-8137-2364-7.263

  • Steiger RH, Jäger E (1977) Subcommission on geochronology: convention on the use of decay constants in geo-and cosmochronology. Earth Planet Sci Lett 36(3):359–362

    Article  Google Scholar 

  • Stipp M, StuÈnitz H, Heilbronner R, Schmid SM (2002) The eastern Tonale fault zone: a ‘natural laboratory’for crystal plastic deformation of quartz over a temperature range from 250 to 700 C. J Struct Geol 24(12):1861–1884

    Article  Google Scholar 

  • Stöcklin J (1968) Structural history and tectonics of Iran: a review. Am Asso Petrol Geol Bull 52:1229–1258

    Google Scholar 

  • Stöcklin J, Nabavi MH (1973) 1/2500000 sheet, tectonic map of Iran, Geological Survey of Iran. Tehran, Iran

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol Soc Lond Spec Publ 42(1):313–345. https://doi.org/10.1144/GSL.SP.1989.042.01.19

    Article  Google Scholar 

  • Sun WH, Zhou MF (2008) The ∼860-Ma, Cordilleran-type Guandaoshan dioritic pluton in the Yangtze Block, SW China: implications for the origin of Neoproterozoic magmatism. J Geol 116(3):238–253

    Article  Google Scholar 

  • Tera F, Wasserburg GJ (1972) U-Th-Pb systematics in three Apollo 14 basalts and the problem of initial Pb in lunar rocks. Earth Planet Sci Lett 14(3):281–304

    Article  Google Scholar 

  • Valipour Hafshejani F, Shabanian Boroujeni N, Davoudian Dehkordi AR, Karimi Dehkordi M (2018) Determination of the type, weathering conditions and tectonic setting of the host rock quartz-feldspar schists of the Surdi-dosha Valley, northeast of the lake

  • Villa IM, De Bievre P, Holden NE, Renne PR (2015) IUPAC-IUGS recommendation on the half-life of 87Rb. Geochim Cosmochim Acta 164:382–385. https://doi.org/10.1016/j.gca.2015.05.025

    Article  Google Scholar 

  • von Raumer JF, Stampfli GM (2008) The birth of the Rheic Ocean—Early Palaeozoic subsidence patterns and subsequent tectonic plate scenarios. Tectonophysics 461(1–4):9–20

    Article  Google Scholar 

  • Watterson, J., 1979. Strain and strain-rate gradients at the ductile levels of fault displacements. In: Proc. Conf. VIII, Analysis of actual fault zones in bedrock, U.S. Geol. Surv. Open-file Rept. 79–1239, 235–57.

  • Whalen JB, Currie KL, Chappell BW (1987) A-type granites: geochemical characteristics, discrimination and petrogenesis. Contrib Miner Petrol 95(4):407–419. https://doi.org/10.1007/BF00402202

    Article  Google Scholar 

  • White JT, White SH (1983) Semi-brittle deformation within the Alpine fault zone, New Zealand. J Struct Geol 5(6):579–589

    Article  Google Scholar 

  • Whitney DL, Evans BW (2010) Abbreviations for names of rock-forming minerals. Am Miner 95(1):185–187

    Article  Google Scholar 

  • Winchester JA, Floyd PA (1977) Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem Geol 20:325–343. https://doi.org/10.1016/0009-2541(77)90057-2

    Article  Google Scholar 

  • Wu YB, Zheng YF, Zhang SB, Zhao ZF, Wu FY, Liu XM (2007) Zircon U-Pb ages and Hf isotope compositions of migmatite from the North Dabie terrane in China: constraints on partial melting. J Metamorph Geol 25(9):991–1009

    Article  Google Scholar 

  • Zayandehrood, Sanandaj-Sirjan Zone. Scientific Quarterly Journal of Geosciences, 4(1), pp.79–96, (in Persian with English Abstract).

  • Zhao JH, Zhou MF (2007) Neoproterozoic adakitic plutons and arc magmatism along the western margin of the Yangtze Block. S Chin J Geol 115(6):675–689

    Google Scholar 

  • Zhao JH, Zhou MF (2009) Melting of newly formed mafic crust for the formation of Neoproterozoic I-type granite in the Hannan region. S Chin J Geol 117(1):54–70

    Google Scholar 

  • Zhao JH, Hu R, Liu S (2004) Geochemistry, petrogenesis, and tectonic significance of Mesozoic mafic dikes, Fujian province, southeastern China. Int Geol Rev 46(6):542–557

    Article  Google Scholar 

Download references

Acknowledgements

The research was partly financially supported by Shahrekord University, Iran (No. 98GRD1M1214), Nagoya University, Japan (JSPS KAKENHI grant no. 17H01671), and Foundation for Science and Technology, Portugal (Geobiotec: UID/GEO/04035/2019). We are very grateful to Prof. Yunpeng Dong, and Dr. Hadi Shafaii Moghadam for their constructive comments and suggestions that helped to improve the manuscript. Editorial handeling and suggestions by Topic Editor Prof. Jean Francois Moyen and Editor-in-Chief Prof. Wolf-Christian Dullo are highly appreciated. The authors also greatfully acknowledge Dr. T. Nazari-Dehkordi for editing the English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nahid Shabanian.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moradi, A., Shabanian, N., Davoudian, A.R. et al. Zircon U–Pb and geochemistry of the north Shahrekord metamorphosed felsic rocks: implications for the Ediacaran–Cambrian tectonic setting of Iran. Int J Earth Sci (Geol Rundsch) 111, 2239–2263 (2022). https://doi.org/10.1007/s00531-022-02225-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-022-02225-x

Keywords

Navigation