Log in

Characteristics and timing of hydrothermal fluid circulation in the fossil Pyrenean hyperextended rift system: new constraints from the Chaînons Béarnais (W Pyrenees)

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The evolution of hyperextended rift systems is linked to complex tectonic processes in which fluid activity is much more important than previously thought. This study sheds light on the fluid-sediment interactions within the distalmost parts of the Mauléon-Arzacq hyperextended basin (Western Pyrenees) focusing on the post-depositional modifications of pre- to syn-hyperextension sediments due to hydrothermal fluids. Strong field- and petrography-based evidence demonstrates the presence of fluid-related products affecting the Jurassic to Cretaceous sediments exposed in the Chaînons Béarnais (easternmost Mauléon basin). These are supported by new U–Pb dating of carbonates and microthermometry of fluid inclusions showing temperatures of up to 250 °C and highly depleted δ18O and strongly enriched 87Sr/86Sr values. Two main stages of fluid activity can be defined: (i) a carbonate-rich stage leading to fabric-destructive replacement dolomitization of the pre-rift carbonates, widespread hydro-fracturation giving rise to different types of hydraulic breccias cemented by multi-phase dolomite and calcite dated at ~ 96 Ma; and (ii) a Na-SiO2-rich stage associated with authigenic albite and quartz, mainly affecting syn-rift deposits. Finally, the occurrence of dolomitic marbles and mylonites provide evidence for strong recrystallization and ductile shearing affecting the sediments during the latest stages of hyperextension at ~ 94 Ma. The Chaînons Béarnais represent a primary target to investigate fluid-rock interactions linked to extensional tectonics that can be used as an analogue to compare to other fossil rift systems (e.g. Adriatic paleo-rifted margin) or present-day magma-poor, hyperextended rifted margins (e.g. Iberia-Newfoundland).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(modified after Teixell et al. (2016))

Fig. 2

Modified after Clerc et al. (2015)

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Anderson TF, Arthur MA (1983) Stable isotopes of oxygen and carbon and their application to sedimentologic and paleoenvironmental problems. In: Arthur MA, Anderson TF, Kaplan IR, Veizer J, Land LS (eds) Stable isotopes in sedimentary geology, vol 10. SEPM Short Course, Columbia, pp 1–151

    Google Scholar 

  • Asti R, Lagabrielle Y, Fourcade S, Corre B, Monié P (2019) How do continents deform during mantle exhumation? Insights from the northern Iberia inverted paleopassive margin, Western Pyrenees (France). Tectonics. https://doi.org/10.1029/2018TC005428

    Article  Google Scholar 

  • Azambre B, Rossy M, Lago M (1987) Caractéristiques pétrologiques des dolérites tholéitiques d’âge triasiques (ophites) du domaine pyrénéen. Bull Mineral 110:379–396

    Google Scholar 

  • Azambre B, Rossy M, Albarède F (1992) Petrology of the alkaline magmatism from the Cretaceous North-Pyrenean rift zone (France and Spain). Eur J Mineral 4:813–834

    Google Scholar 

  • Bayrakci G, Minshull TA, Sawyer DS, Reston TJ, Klaeschen D, Papenberg C, Ranero C, Bull JM, Davy RG, Shillington DJ, Perez-Gussinye M, Morgan JK (2016) Fault-controlled hydration of the upper mantle during continental rifting. Nat Geosci Lett. https://doi.org/10.1038/NGEO2671

    Article  Google Scholar 

  • Beltrando M, Manatschal G, Mohn G, Dal Piaz GV, Vitale Brovarone A, Masini E (2014) Recognizing remnants of magma-poor rifted margins in high-pressure orogenic belts: the Alpine case study. Earth Sci Rev 131:88–115

    Google Scholar 

  • Boillot G, Winterer EL, Meyer AW (1988) Proceedings of the ocean drilling program, 103 Initial Reports. In: Boillot G, Winterer EL, Meyer AW (eds) Ocean drilling program

  • Boschi C, Früh-Green L, Delacour A, Karson JA, Kelley DS (2006) Mass transfer and fluid flow during detachment faulting and develepoment of an oceanic core complex, Atlantis Massif (MAR 30°N). Geochem Geophys Geosyst 7:Q01004. https://doi.org/10.1029/2005GC001074

    Article  Google Scholar 

  • Boulvais P, de Parseval P, D’Hulst A, Paris P (2006) Carbonate alteration associated with talc-chlorite mineralization in the eastern Pyrenees, with emphasis on the St. Barthelemy Massif. Mineral Petrol 88:499–526

    Google Scholar 

  • Boulvais P, Ruffet G, Cornichet J, Mermet M (2007) Cretaceous albitization and dequartzification of Hercynian peraluminous granite in the Salvezines Massif (French Pyrenees). Lithos 93:89–106

    Google Scholar 

  • Breitenbach SFM, Bernasconi SM (2011) Carbon and oxygen isotope analysis of small carbonate samples (20 to 100 μg) with a GasBench II preparation device. Rapid Commun Mass Spectrom 25:1910–1914

    Google Scholar 

  • Brune S, Heine C, Perez-Gussinye M, Sobolev SV (2014) Rift migration explains continental margin asymmetry and crustal hyper-extension. Nat Commun 5:4014. https://doi.org/10.1038/ncomms5014

    Article  Google Scholar 

  • Castanares LM, Robles S, Vicente Bravo JC (1997) Distribution estratigrafica de los episodios volcanicos submarinos del Albiense-Santoniense en la Cuenca Vasca (sector Gernika-Plentzia, Bizkaia). Geogaceta 22:43–46

    Google Scholar 

  • Castanares LM, Robles S, Gimeno D, Vicente Bravo JC (2001) The submarine volcanic system of the Errigoiti formation (Albian-Santonian of the Basque-Cantabrian Basin, Northern Spain): stratigraphic framework, facies, and sequences. J Sediment Res 71:318–333. https://doi.org/10.1306/080700710318

    Article  Google Scholar 

  • Casteras M, Godechot Y, Villanova M (1970) Feuille de Lourdes (1052), Carte géologique de la France 1/50,000. Bureau de Recherche Géologique et Minières, Orléans

    Google Scholar 

  • Claude D (1990) Etude stratigraphique, sédimentologique et structural des dépôts mésozoïques au Nord du massif du Labourd. Rôle de la faille de Pamplona (Pays Basque). PhD thesis, Université de Bordeaux III, p 252

  • Clerc C, Lagabrielle Y (2014) Thermal control on the modes of crustal thinning leading to mantle exhumation. Insights from the Cretaceous Pyrenean hot paleomargins. Tectonics 33:1340–1359. https://doi.org/10.1002/2013TC003471

    Article  Google Scholar 

  • Clerc C, Lagabrielle Y, Neumaier M, Reynaud J-Y, de Saint BM (2012) Exhumation of subcontinental mantle rocks: evidence from ultramafic-bearing clastic deposits nearby the Lherz peridotite body, French Pyrenees. Bull Soc Géol France 183(5):443–459

    Google Scholar 

  • Clerc C, Lahfid A, Monié P, Lagabrielle Y, Chopin C, Pujol M, Boulvais P, Ringenbach JC, Masini E, de St BM (2015) High-temperature metamorphism during extreme thinning of the continental crust: a reappraisal of the North Pyrenean passive paleomargin. Solid Earth 6:643–668

    Google Scholar 

  • Cohen KM, Finney SC, Gibbard PL, Fan JX (2013) The ICS international chronostratigraphic chart. Episodes 36:199–204

    Google Scholar 

  • Coltat R, Boulvais P, Branquet Y, Collot J, Epin ME, Manatschal G (2019) Syntectonic carbonation during synmagmatic mantle exhumation at an ocean-continent transition. Geology 47:183–186. https://doi.org/10.1130/G45530.1

    Article  Google Scholar 

  • Corre B, Boulvais P, Boiron MC, Lagabrielle Y, Marasi L, Clerc C (2018) Fluid circulations in response to mantle exhumation at the passive margin setting in the north Pyrenean zone, France. Mineral Petrol. https://doi.org/10.1007/s00710-018-0559-x

    Article  Google Scholar 

  • DeFelipe I, Pedreira D, Pulgar JA, Iriarte E, Mendia M (2017) Mantle exhumation and metamorphism in the Basque-Cantabrian Basin (N Spain): stable and clumped isotope analysis in carbonates and comparison with ophicalcites in the North-Pyrenean Zone (Urdach and Lherz). Geochem Geophys Geosyst. https://doi.org/10.1002/2016GC006690

    Article  Google Scholar 

  • Ducasse L, Vélasque P (1986) Glissement de couverture et panneaux basculés dans la région des Arbailles (Pyrénées occidentales): un modèle évolution crétacé de la marge nord-ibérique à l’Est de la transformante de Pamplona. Compte Rendu de l’Académie des Sciences 303(16):1477–1482

    Google Scholar 

  • Epin ME, Manatschal G, Amann M (2017) Defining diagnostic criteria to describe the role of the rift inheritance in collisional orogens: the case of the Err-Platta nappes (Switzerland). Swiss J Geosci 110:419–438

    Google Scholar 

  • Fallourd S, Poujol M, Boulvais P, Paquette J-L, de Saint BM, Remy P (2014) In situ LA-ICP-MS U-Pb titanite dating of Na–Ca metasomatism in orogenic belts: the North Pyrenean example. Int J Earth Sci 103:667–682

    Google Scholar 

  • Filleaudeau PY, Mouthereau F, Pik R (2012) Thermo-tectonic evolution of the south-central Pyrenees from rifting to orogeny: insights from detrital zircon U/Pb and (U-Th)/He thermochronometry. Basin Res 24:401–417

    Google Scholar 

  • Garcìa-Senz J, Pedrera A, Ayala C, Ruiz-Constan A, Robador A, Rodriguez-Fernandez LR (2019) Inversion of the north Iberian hyperextended margin: the role of exhumed mantle indentation during continental collision. In: Hammerstein JA, Di Cuia R, Cottam MA, Zamora G, Butler RWH (eds) Fold and thrust belts: structural style, evolution and exploration. Geological Society, London, Special Publications, p 490. 10.1144/SP490-2019-112

  • Gerdes A, Zeh A (2006) Combined U-Pb and Hf isotope LA-(MC-)ICP-MS analyses of detrital zircons: comparison with SHRIMP and new constraints for the provenance and age of an Armorican metasediment in Central Germany. Earth Planet Sci Lett 249:47–62. https://doi.org/10.1016/j.epsl.2006.06.039

    Article  Google Scholar 

  • Gerdes A, Zeh A (2009) Zircon formation versus zircon alteration—new insights from combined U-Pb and Lu-Hf in-situ La-ICP-MS analyses of Archean zircons from the Limpopo Belt. Chem Geol 261(3–4):230–243

    Google Scholar 

  • Golberg JM, Maluski H, Leyreloup AF (1986) Petrological and age relationship between emplacement of magmatic breccia, alkaline magmatism, and static metamorphism in the North Pyrenean Zone. Tectonophysics 129(1–4):275–290. https://doi.org/10.1016/0040-1951(86)90256-8

    Article  Google Scholar 

  • Haeri-Ardakani O, Al-Aasm I, Coniglio M (2013) Fracture mineralization and fluid flow evolution: an example from Ordovician-Devonian carbonates, southwestern Ontario, Canada. Geofluids 13:1–20

    Google Scholar 

  • Hart NR, Stockli DF, Lavier LL, Hayman NW (2017) Thermal evolution of a hyper-extended rift basin, Mauleon Basin, Western Pyrenees. Tectonics 36:1103–1128. https://doi.org/10.1002/2016TC004365

    Article  Google Scholar 

  • Henry P, Azambre B, Montigny R, Rossy M, Stevenson RK (1998) Late mantle evolution of the Pyrenean sub-continental lithospheric mantle in the light of new 40Ar-39Ar and Sm-Nd ages on pyroxenites and peridotites (Pyrenees, France). Tectonophysics 296(1–2):103–123. https://doi.org/10.1016/S0040-1951(98)00139-5

    Article  Google Scholar 

  • Hensen C, Nuzzo M, Hornibrook E, Pinheiro L, Bock B, Magalhaes V, Bruckmann W (2007) Sources of mud volcano fluids in the Gulf of Cadiz-indications for hydrothermal imprint. Geochim Cosmochim Acta 71:1232–1248

    Google Scholar 

  • Hensen C, Duarte JC, Vannucchi P, Mazzini A, Lever MA, Terrinha P, Géli L, Henry P, Villinger H, Morgan J, Schmidt M, Gutscher MA, Bartolome R, Zomonaga Y, Polonia A, Gràcia E, Tinivella U, Lupi M, Çagatay MN, Elvert M, Sakellariou D, Matias L, Kipfer R, Karageorgis AP, Ruffine L, Liebetrau V, Pierre C, Schmidt C, Batista L, Gasperini L, Burwicz E, Neres M, Nuzzo M (2019) Marine transform faults and fracture zones: a joint perspective integrating seismicity, fluid flow and life. Front Earth Sci 7:39. https://doi.org/10.3389/feart.2019.00039

    Article  Google Scholar 

  • Hollis C, Bastesen E, Boyce A, Corlett H, Gawthorpe R, Hirani J, Rotevatn A, Whitaker F (2017) Fault-controlled dolomitization in a rift basin. Geology 45:219–222

    Google Scholar 

  • Horita J (2014) Oxygen and carbon isotope fractionation in the system dolomite-water-CO2 to elevated temperatures. Geochim Cosmochim Acta 129:111–124

    Google Scholar 

  • Incerpi N, Martire L, Manatschal G, Bernasconi S (2017) Evidence of hydrothermal fluid flow in a hyperextended rifted margin: the case study of the Err nappe (SE Switzerland). Swiss J Geosci. https://doi.org/10.1007/s00015-016-0235-2

    Article  Google Scholar 

  • Incerpi N, Martire L, Bernasconi SM, Manatschal G, Gerdes A (2018) Silica-rich septarian concretions in biogenic silica-poor sediments: A marker of hydrothermal activity at fossil hyper-extended rifted margins (Err nappe, Switzerland). Sediment Geol 378:19–33. https://doi.org/10.1016/j.sedgeo.2018.10.005

    Article  Google Scholar 

  • Incerpi N, Martire L, Manatschal G, Bernasconi SM, Gerdes A, Czuppon G, Palcsu L, Karner GD, Johnson CA, Figueredo PH (2019) Hydrothermal fluid flow associated to the extensional evolution of the Adriatic rifted margin: Insights from the pre- to post-rift sedimentary sequence (SE Switzerland, N Italy). Basin Res. https://doi.org/10.1111/bre.12370

    Article  Google Scholar 

  • Jammes S, Manatschal G, Lavier L, Masini E (2009) Tectono-sedimentary evolution related to extreme crustal thinning ahead of a propagating ocean; example of the western Pyrenees. Tectonics. https://doi.org/10.1029/2008TC002406

    Article  Google Scholar 

  • Jammes S, Lavier LL, Manatschal G (2010a) Extreme crustal thinning in the Bay of Biscay and the Western Pyrenees: from observations to modeling. Geochem Geophys Geosyst. https://doi.org/10.1029/2010GC003218

    Article  Google Scholar 

  • Jammes S, Manatschal G, Lavier LL (2010b) Interaction between prerift salt and detachment faulting in hyperextended rift systems: the example of the Parentis and Mauléon basins (Bay of Biscay and western Pyrenees). Am Assoc Petrol Geol Bull 94(7):957–975

    Google Scholar 

  • Johnson JA, Hall CA (1989a) The structural and sedimentary evolution of the Cretaceous North Pyrenean Basin, southern France. Geol Soc Am Bull 101:231–247

    Google Scholar 

  • Johnson JA, Hall CA (1989b) Tectono-stratigraphic model for the massif d’Igountze-Mendibelza, western Pyrenees. J Geol Soc Lond 146:925–932

    Google Scholar 

  • Kastner M (1971) Authigenic feldspars in carbonate rocks. Am Mineral 56:1403–1442

    Google Scholar 

  • Lagabrielle Y, Bodinier JL (2008) Submarine reworking of exhumed subcontinental mantle rocks; field evidence from the Lherz peridotites, French Pyrenees. Terra Nova 20(1):11–21

    Google Scholar 

  • Lagabrielle Y, Labaume P, De Saint Blanquat M (2010) Mantle exhumation, crustal denudation, and gravity tectonics during Cretaceous rifting in the Pyrenean realm (SW Europe): insights from the geological setting of the lherzolite bodies. Tectonics 29:TC4012

    Google Scholar 

  • Lagabrielle Y, Clerc C, Vauchez A, Lahfid A, Labaume P, Azambre B, Fourcade S, Dautria JM (2016) Very high geothermal gradient during mantle exhumation recorded in mylonitic marbles and carbonate breccias from a Mesozoic Pyrenean palaeomargin (Lherz area, North Pyrenean Zone, France). C R Geosci 348:290–300

    Google Scholar 

  • Land LS (1985) The origin of massive dolomite. J Geol Educ 33:112–125. https://doi.org/10.5408/0022-1368-33.2.112

    Article  Google Scholar 

  • Lescoutre R, Tugend J, Brune S, Masini E, Manatschal G (2019) Thermal evolution of asymmetric magma-poor rift systems: results from numerical modeling and Pyrenena field observations. Geochem Geophys Geosyst. https://doi.org/10.1029/2019GC008600

    Article  Google Scholar 

  • López-Horgue MA, Owen HG, Rodriguez-Lázaro J, Orue-Etxebarria F-M, Garcıa-Mondéjar J (1999) Late Albian-Early Cenomanian stratigraphic succession near Estella-Lizarra (Navarra, central northern Spain) and its regional and interregional correlation. Cretac Res 20:369–402. https://doi.org/10.1006/cres.1999.0162

    Article  Google Scholar 

  • López-Horgue MA, Owen HG, Aranburu A, Fernandez-Mendiola PA, Garcia-Mondéjar J (2009) Early late Albian (Cretaceous) of the central region of the Basque-Cantabrian Basin, northern Spain: biostratigraphy based on ammonites and orbitolinids. Cretac Res 30:385–400. https://doi.org/10.1016/j.cretres.2008.08.001

    Article  Google Scholar 

  • Machel HG (2004) Concepts and models of dolomitization: a critical reappraisal. In: Braithwaite CJR, Rizzi G, Darke G (eds) The geometry and petrogenesis of dolomite hydrocarbon reservoirs, vol 235, no 1. Geological Society, London, Special Publications, pp 7–63

  • Masini E, Manatschal G, Mohn G, Ghienne JF, Lafont F (2011) The tectono-sedimentary evolution of a supra-detachment rift basin at a deep-water magma-poor rifted margin: the example of the Samedan Basin preserved in the Err nappe in SE Switzerland. Basin Res 23:652–677. https://doi.org/10.1111/j.1365-2117.2011.00509.x

    Article  Google Scholar 

  • Masini E, Manatschal G, Tugend J, Mohn G, Flament JM (2014) The tectono-sedimentary evolution of a hyper-extended rift basin: the example of the Arzacq-Mauléon rift system (Western Pyrenees, SW France). Int J Earth Sci. https://doi.org/10.1007/s00531-014-1023-8

    Article  Google Scholar 

  • McArthur JM, Howarth RJ, Shields GA (2012) strontium isotope stratigraphy. In: Gradstein FM, Ogg JG, Schmitz M, Ogg G (eds) The geologic time scale. Elsevier, pp 127–144

  • McKenzie JA (1991) The dolomite problem: an outstanding controversy. In: Muller DW, McKenzie JA, Weissert H (eds) Controversies in modern geology: evolution of geological theories in sedimentology. Academic Press, London, pp 37–54

    Google Scholar 

  • Meister P, Mckenzie JA, Bernasconi SM (2013) Dolomite formation in the shallow seas of the Alpine Triassic. Sedimentology 60:270–291

    Google Scholar 

  • Montigny R, Azambre B, Rossy M, Thuizat R (1982) Etude K/Ar du magmatisme basique lié au Trias supérieur des Pyrénées—conséquences méthodologiques et pétrographiques. Bull Mineral 105:673–680

    Google Scholar 

  • Montigny R, Azambre B, Rossy M, Thuizat R (1986) K-Ar study of Cretaceous magmatism and metamorphism from Pyrenees; age and length of rotation of the Iberian Peninsula. Tectonophysics 129:257–274

    Google Scholar 

  • Morrow DW (1982) Descriptive field classification of sedimentary and diagenetic breccias fabrics in carbonate rocks. Bull Can Petrol Geol 30:227–229

    Google Scholar 

  • Mouthereau F, Filleaudeau PY, Vacherat A, Pik R, Lacombe O, Fellin MG, Castelltort S, Christophoul F, Masini E (2014) Placing limits to shortening evolution in the Pyrenees: role of margin architecture and implications for the Iberia/Europe convergence. Tectonics 33:2283–2314

    Google Scholar 

  • Pedreira D, Pulgar JA, Gallart J, Torné M (2007) Three-dimensional gravity and magnetic modeling of crustal indentation and wedging in the western Pyrenees-Cantabrian Mountains. J Geophys Res. https://doi.org/10.1029/2007JB005021

    Article  Google Scholar 

  • Picazo S, Lafay R, Faucheux V, Vennemann T (2019) New constraints on carbonation associated with brecciation in hyper-extended margins (example of Iberia and Newfoundland margins). Terra Nova. https://doi.org/10.1111/ter.12383

    Article  Google Scholar 

  • Pinto VH, Manatschal G, Karpoff AM, Viana A (2015) Tracing mantle-reacted fluids in magma-poor rifted margin: the example of Alpine Tethyan rifted margin. Geochem Geophys Geosyst 16:3271–3308

    Google Scholar 

  • Pinto VH, Mnatschal G, Karpoff AM, Ulrich M, Viana AR (2016) Seawater storage and element transfer associated with mantle serpentinization in magma-poor rifted margins: a quantitative approach. Earth Planet Sci Lett. https://doi.org/10.1016/j.epsl.2016.11.023

    Article  Google Scholar 

  • Poujol M, Boulvais P, Kosler J (2010) In-situ LA-ICP-MS U-Th-Pb dating of metasomatic fluid circulation: evidence of regional-scale albitization in the Pyrenees. J Geol Soc 167:751–767

    Google Scholar 

  • Purser BH, Tucker ME, Zenger DH (1994) Dolomites—a volume in honour of Dolomieu. International Association of Sedimentologists, Special Publications, p 21

  • Quesnel B, Boiron MC, Cathelineau M, Truche L, Rigaudier T, Bardoux G, Agrinier P, de St BM, Masini E, Gaucher EC (2019) Nature and origin of mineralizing fluids in hyperextensional systems: The case of cretaceous Mg metasomatism in the Pyrenees. Geofluids. https://doi.org/10.1155/2019/7213050

    Article  Google Scholar 

  • Rais P, Louis-Schmid B, Bernasconi SM, Reusser E, Weissert H (2008) Distribution of authigenic albites in a limestone succession of the Helvetic Domain, eastern Switzerland. Swiss J Geosci 101:99–106

    Google Scholar 

  • Renard S, Pironon J, Sterpenich J, Carpentier C, Lescanne M, Gaucher EC (2019) Diagenesis in Mesozoic carbonate rocks in the North Pyrenees (France) from mineralogy and fluid inclusion analysis: example of Rousse reservoir and caprock. Chem Geol 508:30–46. https://doi.org/10.1016/j.chemgeo.2018.06.017

    Article  Google Scholar 

  • Ribes C, Manatschal G, Ghienne JF, Karner GD, Johnson CA, Figueredo PH, Incerpi N, Epin ME (2019a) The syn-rift stratigraphic record across a fossil hyper-extended rifted margin: the example of the northwestern Adriatic margin exposed in the Central Alps. Int J Earth Sci. https://doi.org/10.1007/s00531-019-01750-6

    Article  Google Scholar 

  • Ribes C, Ghienne JF, Manatschal G, Decarlis A, Karner GD, Figueredo PH, Johnson CA (2019b) Long-lived mega fault-scarps and related breccias at distal rifted margins: Insights from present-day and fossil analogues. J Geol Soc. https://doi.org/10.1144/jgs2018-181

    Article  Google Scholar 

  • Richter DK, Götte T, Habermann D (2002) Cathodoluminescence of authigenic albite. Sediment Geol 150:367–374

    Google Scholar 

  • Roca E, Muñoz JA, Ferrer O, Ellouz N (2011) The role of the Bay of Biscay Mesozoic extensional structure in the configuration of the Pyrenean orogen: constraints from the MARCONI deep seismic reflection survey. Tectonics 30:TC2001

    Google Scholar 

  • Rossy M (1988) Contribution à l’étude du magmatisme mésozoïque du domaine Pyrénéen, I, Le Trias dans l’ensemble du domaine; II, Le Crétacé dans les provinces Basques d’Espagne, Thèse, Université de Besançon, Besançon

  • Rossy M, Azambre B, Albarède F (1992) REE and Sr/1bNd isotope geochemistry of the alkaline magmatism from the Cretaceous North Pyrenean Rift Zone (France-Spain). Chem Geol 97:33–46. https://doi.org/10.1016/0009-2541(92)90134-Q

    Article  Google Scholar 

  • Salardon R, Carpentier C, Bellahsen N, Pironon J, France-Lanord C (2017) Interactions between tectonics and fluid circulations in an inverted hyper-extended basin: Example of mesozoic carbonate rocks of the western North Pyrenean Zone (Chaînons Béarnais, France). Mar Petrol Geol 80:563–586

    Google Scholar 

  • San Miguel de la Camara M (1952) Las eruptiones y las rocas volcanicas de las Vascongadas. Munibe 2–3:115–130

    Google Scholar 

  • Saspiturry N, Razin P, Baudin T, Serrano O, Issautier B, Lasseur E, Allanic C, Thinon I, Leleu S (2019) Symmetry vs. asymmetry of a hyper-thinned rift: example of the Mauléon Basin (Western Pyrenees, France). Mar Petrol Geol 104:86–105

    Google Scholar 

  • Schärer U, de Parseval P, Polvé M, de Saint BM (1999) Formation of the Trimouns talc-chlorite deposit (Pyrenees) from persistent hydrothermal activity between 112 and 97 Ma. Terra Nova 11:30–37

    Google Scholar 

  • Spötl C, Longstaffe FJ, Ramseyer K, Rüdinger B (1999) Authigenic albite in carbonate rocks—a tracer fro deep-burial brine migration? Sedimentology 46:649–666

    Google Scholar 

  • Sun Z, Jian Z, Stock JM, Larsen HC, Klaus A, Alvarez Zarikian CA, the Expedition 367/368 Scientists (2018a) Proceedings of the international ocean discovery program, vol 367/368. https://doi.org/10.14379/iodp.proc.367368.103.2018(publications.iodp.org)

  • Sun Z, Jian Z, Stock JM, Larsen HC, Klaus A, Alvarez Zarikian CA, the Expedition 367/368 Scientists (2018b) Proceedings of the international ocean discovery program, vol 367/368. https://doi.org/10.14379/iodp.proc.367368.105.2018(publications.iodp.org)

  • Teixell A, Labaume P, Lagabrielle Y (2016) The crustal evolution of the west-central Pyrenees revisited: inferences from a new kinematic scenario. Compte Rendu Geosci 348:257–267

    Google Scholar 

  • Tucker ME, Wright VP (1990) Carbonate sedimentology. Blackwell, Oxford, p 428

    Google Scholar 

  • Tugend J, Manatschal G, Kusznir NJ, Masini E, Mohn G, Thinon I (2014) Formation and deformation of hyperextended rift systems: insights from rift domain map** in the Bay of Biscay-Pyrenees. Tectonics. https://doi.org/10.1002/2014TC003529

    Article  Google Scholar 

  • Tugend J, Manatschal G, Kusznir NJ (2015) Spatial and temporal evolution of hyperextended rift systems: implication for the nature, kinematics, and timing of the Iberian-European plate boundary. Geology 43:15–18. https://doi.org/10.1130/G36072.1

    Article  Google Scholar 

  • Vacherat A, Mouthereau F, Pik R, Bernet M, Gautheron C, Masini E, Lahfid A (2014) Thermal imprint of rift-related processes in orogens as recorded in the Pyrenees. Earth Planet Sci Lett 408:296–306. https://doi.org/10.1016/j.epsl.2014.10

    Article  Google Scholar 

  • Vacherat A, Mouthereau F, Pik R, Bellahsen N, Gautheron C, Bernet M, Daudet M, Balansa J, Tibari B, Pinna Jamme R, Radal J (2016) Rift-to-collision transition recorded by tectonothermal evolution of the northern Pyrenees. Tectonics. https://doi.org/10.1002/2015TC004016

    Article  Google Scholar 

Download references

Acknowledgements

The research was financed through a grant to Gianreto Manatschal by ExxonMobil, Petrobras S.A. and MM4 Consortium (BP, Conoco Phillips, Equinor, Petrobras, Total, Shell, BHP‐Billiton and BG). Universita Italo‐Francese/Universite Franco‐Italienne is also thanked for the Bando Vinci 2014 Grant (C2‐190) to Nicolo Incerpi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Incerpi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Incerpi, N., Manatschal, G., Martire, L. et al. Characteristics and timing of hydrothermal fluid circulation in the fossil Pyrenean hyperextended rift system: new constraints from the Chaînons Béarnais (W Pyrenees). Int J Earth Sci (Geol Rundsch) 109, 1071–1093 (2020). https://doi.org/10.1007/s00531-020-01852-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-020-01852-6

Keywords

Navigation