Log in

Global weak solutions in nonlinear 3D thermoelasticity

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

Here we study a nonlinear thermoelasticity hyperbolic-parabolic system describing the balance of momentum and internal energy of a heat-conducting elastic body, preserving the positivity of temperature. So far, no global existence results in such a natural case were available. Our result is obtained by using thermodynamically justified variables which allow us to obtain an equivalent system in which the internal energy balance is replaced with entropy balance. For this system, a concept of weak solution with defect measure is introduced, which satisfies entropy inequality instead of balance and has a positive temperature almost everywhere. Then, the global existence, consistency and weak–strong uniqueness are shown in the cases where heat capacity and heat conductivity are both either constant or non-constant. Let us point out that this is the first result concerning global existence for large initial data in nonlinear thermoelasticity where the model is in full accordance with the laws of thermodynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

This research does not have any associated data.

Notes

  1. In Appendix, it is proved that \(\textbf{u}_t \in C_w\big (0,T; L^2(\Omega )\big )\) for any weak solution.

  2. This assumption is automatically satisfied if, for example, \(e_2\) is convex and \(s_2\) is concave.

  3. For example crystals and glasses.

  4. Here, \(\textrm{div}_{t,x} {\textbf{U}}_n:= \partial _t {\textbf{U}}_n^1 + \sum _{i=1}^3\partial _{x_i}{\textbf{U}}_n^{i+1}\) is the time-space divergence operator, while \(\textrm{curl}_{t,x} {\textbf{V}}_n:= \nabla _{t,x} {\textbf{V}}_n - \nabla _{t,x}^T {\textbf{V}}_n\) is the time-space curl operator.

  5. For the purpose of this theorem, one can extend \(x\mapsto x^{\alpha -1}\) with \(-|x|^{\alpha -1}\) to \({\mathbb {R}}^-\), but since \(\theta >0\), this makes no difference.

References

  1. Alexandre, R., Villani, C.: On the Boltzmann equation for long-range interactions. Comm. Pure Appl. Math. 55, 30–70 (2002)

    Article  MathSciNet  Google Scholar 

  2. Ashcroft, N.W., Mermin, N.D.: Solid State Physics. Harcourt, San Diego (1976)

    Google Scholar 

  3. Aubin, J.-P.: Un théorème de compacité. C. R. Hebd. Seances Acad. Sci. 256, 5042–5044 (1963)

    Google Scholar 

  4. Bauschke, H., Combettes, P.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer, Berlin (2011)

    Book  Google Scholar 

  5. Chen, G.-Q., Dafermos, C.M.: The vanishing viscosity method in one-dimensional thermoelasticity. Trans. Am. Math. Soc. 347, 531–541 (1995)

    Article  MathSciNet  Google Scholar 

  6. Chipot, M. (ed.): Handbook of Differential Equations: Stationary Partial Differential Equations, vol. 6. Elsevier, Amsterdam (2008)

    Google Scholar 

  7. Christoforou, C., Tzavaras, A.: Relative entropy for hyperbolic-parabolic systems and application to the constitutive theory of thermoviscoelasticity. Arch. Ration. Mech. Anal. 229, 1–52 (2018)

    Article  MathSciNet  Google Scholar 

  8. Christoforou, C., Galanopoulou, M., Tzavaras, A.: Measure-valued solutions for the equations of polyconvex adiabatic thermoelasticity. Discr. Contin. Dyn. Syst. 39, 6175–6206 (2019)

    Article  MathSciNet  Google Scholar 

  9. Christoforou, C., Galanopoulou, M., Tzavaras, A.: A discrete variational scheme for isentropic processes in polyconvex thermoelasticity. Calc. Var. Partial Differ. Equ. 59, 122 (2020)

    Article  MathSciNet  Google Scholar 

  10. Cieślak, T., Galić, M., Muha, B.: A model in one-dimensional thermoelasticity. Nonlinear Anal. 216, 112703 (2022)

    Article  MathSciNet  Google Scholar 

  11. Dafermos, C.M.: On the existence and the asymptotic stability of solutions to the equations of linear thermoelasticity. Arch. Ration. Mech. Anal. 29, 241–271 (1968)

    Article  MathSciNet  Google Scholar 

  12. Dafermos, C., Hsiao, L.: Global smooth thermomechanical processes in one-dimensional nonlinear thermoviscoelasticity. Nonlinear Anal. 6, 435–454 (1982)

    Article  MathSciNet  Google Scholar 

  13. Dafermos, C., Hsiao, L.: Development of singularities in solutions of the equations of nonlinear thermoelasticity. Q. Appl. Math. 44, 463–474 (1986)

    Article  MathSciNet  Google Scholar 

  14. DiPerna, R.J., Lions, P.-L.: On the Fokker–Planck–Boltzmann equation. Commun. Math. Phys. 120, 1–23 (1988)

    Article  MathSciNet  Google Scholar 

  15. Feireisl, E., Novotny, A.: Weak–strong uniqueness property for the full Navier–Stokes–Fourier system. Arch. Ration. Mech. Anal. 204, 683–706 (2012)

    Article  MathSciNet  Google Scholar 

  16. Feireisl, E., Novotny, A.: Singular Limits in Thermodynamics of Viscous Fluids. Advances in Mathematical Fluid Mechanics. Birkhäuser, Basel (2009)

    Google Scholar 

  17. Galanopoulou, M., Vikelis, A., Koumatos, K.: Weak-strong uniqueness for measure-valued solutions to the equations of quasiconvex adiabatic thermoelasticity. Commun. Partial. Differ. Equ. 47, 1133–1175 (2022)

    Article  MathSciNet  Google Scholar 

  18. Jiang, S.: Global existence and asymptotic behavior of smooth solutions in one-dimensional thermoelasticity. Proc. R. Soc. Edinb. 115A, 257–274 (1990)

    Article  Google Scholar 

  19. Jiang, S., Racke, R.: Evolution Equations in Thermoelasticity. Chapman and Hall/CRC, Boca Raton (2000)

    Google Scholar 

  20. Jiang, S., Racke, R.: On some quasilinear hyperbolic–parabolic initital boundary value problems. Math. Methods Appl. Sci. 12, 315–339 (1990)

    Article  MathSciNet  Google Scholar 

  21. Ladyzhenskaya, O.A., Solonnikov, V.A., Uralceva, N.N.: Linear and quasilinear equations of parabolic type. In: Translations Mathematical Monograph 23, American Mathematical Society, Providence (1968)

  22. Lagnese, J.E.: Boundary Stabilization of Thin Plates. SIAM Studies in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1989)

    Book  Google Scholar 

  23. Lasiecka, I., Triggiani, R.: Control Theory for Partial Differential Equations: Continuous and Approximation Theories I. Encyclopedia of Mathematics and its Applications, vol. 74. Cambridge University Press, Cambridge (2000)

    Book  Google Scholar 

  24. Lebeau, G., Zuazua, E.: Null-controllability of a system of linear thermoelasticity. Arch. Ration. Mech. Anal. 141, 297–329 (1998)

    Article  MathSciNet  Google Scholar 

  25. Murat, F.: Compacité par compensation. Ann. Sc. Norm. Sup. Pisa Cl. Sci. 4V, 489–507 (1978)

    Google Scholar 

  26. Nečas, J.: About domains of the type \({\mathfrak{R} }\) (Russian). Czechoslovak Math. J. 87, 274–287 (1962)

    Article  Google Scholar 

  27. Racke, R.: Initial boundary value problems in one-dimensional non-linear thermoelasticity. Math. Meth. Appl. Sci. 10, 517–529 (1988)

    Article  Google Scholar 

  28. Racke, R., Shibata, Y.: Global smooth solutions and asymptotic stability in one-dimensional thermoelasticity. Arch. Ration. Mech. Anal. 116, 1–34 (1991)

    Article  MathSciNet  Google Scholar 

  29. Racke, R., Zheng, S.: Global existence and asymptotic behavior in nonlinear thermoviscoelasticity. J. Differ. Equ. 134, 46–67 (1997)

    Article  MathSciNet  Google Scholar 

  30. Ross, R.G.: Thermal conductivity and disorder in nonmetallic materials. Phys. Chem. Liq. 23, 189–210 (1991)

    Article  Google Scholar 

  31. Roubíček, T.: Nonlinear Partial Differential Equations with Applications, International Series of Numerical Mathematics, vol. 153. Birkhäuser Verlag, Basel (2005)

    Google Scholar 

  32. Simon, S.H.: The Oxford Solid State Basics. Oxford University Press, Oxford (2011)

    Google Scholar 

  33. Serrin, J.: The equations of continuum mechanics and the laws of thermodynamics. Meccanica 31, 547–563 (1996)

    Article  MathSciNet  Google Scholar 

  34. Slemrod, M.: Global existence, uniqueness and asymptotic stability of classical smooth solutions in one-dimensional nonlinear thermoelasticity. Arch. Ration. Mech. Anal. 76, 97–133 (1981)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank an anonymous Referee for several useful suggestions and comments.

T.C. was supported by the National Science Center of Poland grant SONATA BIS 7 number UMO-2017/26/E/ST1/00989. B.M. was partially supported by the Croatian Science Foundation (Hrvatska Zaklada za Znanost) grant number IP-2018-01-3706. S.T. was supported by Provincial Secretariat for Higher Education and Scientific Research of Vojvodina, Serbia, grant no 142-451-2593/2021-01/2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Muha.

Additional information

Communicated by Andrea Mondino.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Lemma

Let \(\Omega \) be a Lipschitz domain and let \(p\in (1,\infty ]\). Assume that \(\theta \in L^p(0,T;{\mathcal {M}}(\Omega ))\), and that \({\textbf{u}}\in L^p(0,T;H^1(\Omega ))\) with \({\textbf{u}}_t \in L^\infty (0,T;L^2(\Omega ))\) satisfies the following equation

$$\begin{aligned} \int _0^T\int _\Omega {\textbf{u}}_t \cdot \varvec{\varphi }_t - \int _0^T\int _\Omega {\mathbb {D}}({\textbf{u}}): \nabla \varvec{\varphi }+ \mu \int _0^T{}_{{\mathcal {M}}(\Omega )}\langle \theta , \nabla \cdot \varvec{\varphi }\rangle _{C_0(\Omega )} =-\int _\Omega {\textbf{v}}_0\cdot \varvec{\varphi }, \end{aligned}$$

for all test function \(\varvec{\varphi }\in H^1(0,T;C^{\infty }_0(\Omega ))\), \({\varvec{\varphi }}(T)=0\), where \({\textbf{v}}_0\in L^2(\Omega )\) is given. Then, \({\textbf{u}}_t \in C_w(0,T;L^2(\Omega ))\).

Proof

First, let us prove that. Since \(\theta \in L^p(0,T;{\mathcal {M}}(\Omega ))\), one has from the equation for every \(\varvec{\varphi }\in C_0^\infty ((0,T)\times \Omega )\) that

$$\begin{aligned} \left| \int _0^T\int _\Omega {\textbf{u}}_{tt}\cdot \varvec{\varphi }\right| \le \big (||{\textbf{u}}||_{L^p(0,T;H^1(\Omega ))}+||\theta ||_{L^p(0,T;{\mathcal {M}}^+(\Omega ))}\big )||\varvec{\varphi }||_{L^{p^*}(0,T; W^{2,\infty }(\Omega ))}, \end{aligned}$$

so \({\textbf{u}}_{tt} \in L^{p^*}(0,T; [C_0^\infty (\Omega )]')\), and consequently \({\textbf{u}}_t\in C(0,T; [C_0^\infty (\Omega )]')\).

Now, for an arbitrary \(\varvec{\varphi }\in L^{2}(\Omega )\), let \(\varvec{\varphi }_n\in C_0^\infty (\Omega )\) be such that \(||\varvec{\varphi }_n-\varvec{\varphi }||_{L^{2}(\Omega )}\rightarrow 0\), as \(n\rightarrow \infty \). Then, for almost all \(t_1, t_2\), one has

$$\begin{aligned}{} & {} \int _\Omega ({\textbf{u}}_t(t_1)-{\textbf{u}}_t(t_2))\cdot \varvec{\varphi }\\{} & {} \quad =\int _\Omega ({\textbf{u}}_t(t_1)-{\textbf{u}}_t(t_2))\cdot (\varvec{\varphi }-\varvec{\varphi }_n)+\int _\Omega ({\textbf{u}}_t(t_1)-{\textbf{u}}_t(t_2))\cdot \varvec{\varphi }_n, \end{aligned}$$

so

$$\begin{aligned}{} & {} \lim \limits _{t_2\rightarrow t_1}\left| \int _\Omega ({\textbf{u}}_t(t_1)-{\textbf{u}}_t(t_2))\cdot \varvec{\varphi }\right| \\{} & {} \quad \le \lim \limits _{t_2\rightarrow t_1}\left| \int _\Omega ({\textbf{u}}_t(t_1)-{\textbf{u}}_t(t_2))\cdot (\varvec{\varphi }-\varvec{\varphi }_n)\right| + \underbrace{\lim \limits _{t_2\rightarrow t_1}\left| \int _\Omega ({\textbf{u}}_t(t_1)-{\textbf{u}}_t(t_2))\cdot \varvec{\varphi }_n\right| }_{=0}\\{} & {} \quad \le 2||{\textbf{u}}_t||_{L^\infty (0,T;L^2(\Omega ))}||\varvec{\varphi }-\varvec{\varphi }_n||_{L^2(\Omega )} \rightarrow 0, \quad \text {as }n\rightarrow \infty . \end{aligned}$$

Now, we can give meaning to \(\int _\Omega {\textbf{u}}_t(t)\cdot \varvec{\varphi }\) for all t by constructing a sequence of \(t_n\) such that \(\int _\Omega {\textbf{u}}_t(t_n)\cdot \varvec{\varphi }\) is finite for all n and \(t_n\rightarrow t\) as \(n\rightarrow \infty \). From the above inequality, \(\int _\Omega {\textbf{u}}_t(t_n)\cdot \varvec{\varphi }\) forms a Cauchy sequence which converges to a unique limit \(a_{\varvec{\varphi }}\in {\mathbb {R}}\) for any \(\varvec{\varphi }\), independent of the choice of the sequence \(\{t_n\}_{n\in {\mathbb {N}}}\). Now, since \(\left| \int _\Omega {\textbf{u}}_t(t_n)\cdot \varvec{\varphi }\right| \le C||\varphi ||_{L^2(\Omega )}\), one has that \(|a_{\varvec{\varphi }}|\le C||\varphi ||_{L^2(\Omega )}\). This combined with linearity of \(\varvec{\varphi }\mapsto a_{\varvec{\varphi }}\) allows us to identify \(a_{\varvec{\varphi }}\) with a function \({\textbf{u}}_t(t)\in L^2(\Omega )\), by the Riesz theorem. The proof is now finished. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cieślak, T., Muha, B. & Trifunović, S. Global weak solutions in nonlinear 3D thermoelasticity. Calc. Var. 63, 26 (2024). https://doi.org/10.1007/s00526-023-02615-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-023-02615-2

Mathematics Subject Classification

Navigation