Log in

Mixed local and nonlocal equations with measure data

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We study nonlinear measure data problems involving elliptic operators modeled after the mixed local and nonlocal p-Laplacian. We establish existence, regularity and Wolff potential estimates for solutions. As a consequence, we are able to obtain Calderón-Zygmund type estimates and continuity criteria for solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article.

References

  1. Barlow, M.T., Bass, R.F., Chen, Z.-Q., Kassmann, M.: Non-local Dirichlet forms and symmetric jump processes. Trans. Am. Math. Soc. 361(4), 1963–1999 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Biagi, S., Dipierro, S., Valdinoci, E., Vecchi, E.: Semilinear elliptic equations involving mixed local and nonlocal operators. Proc. R. Soc. Edinburgh Sect. A 151(5), 1611–1641 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  3. Biagi, S., Dipierro, S., Valdinoci, E., Vecchi, E.: Mixed local and nonlocal elliptic operators: regularity and maximum principles. Commun. Partial Differ. Equ. 47(3), 585–629 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  4. Biagi, S., Dipierro, S., Valdinoci, E., Vecchi, E.: A Hong-Krahn-Szegö inequality for mixed local and nonlocal operators. Math. Eng. 5(1), 014025 (2023)

    Google Scholar 

  5. Biagi, S., Mugnai, D., Vecchi, E.: A Brezis-Oswald approach for mixed local and nonlocal operators, ar**v:2103.11382

  6. Boccardo, L., Gallouët, T.: Nonlinear elliptic and parabolic equations involving measure data. J. Funct. Anal. 87(1), 149–169 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  7. Boccardo, L., Gallouët, T.: Nonlinear elliptic equations with right-hand side measures. Commun. Partial Differ. Equ. 17(3–4), 641–655 (1992)

    MathSciNet  MATH  Google Scholar 

  8. Brasco, L., Lindgren, E.: Higher Sobolev regularity for the fractional \(p\)-Laplace equation in the superquadratic case. Adv. Math. 304, 300–354 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Brasco, L., Lindgren, E., Schikorra, A.: Higher Hölder regularity for the fractional \(p\)-Laplacian in the superquadratic case. Adv. Math. 338, 782–846 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  10. Caffarelli, L., Chan, C., Vasseur, A.: Regularity theory for parabolic nonlinear integral operators. J. Am. Math. Soc. 24(3), 849–869 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Commun. Partial Differ. Equ. 32(7–9), 1245–1260 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Caffarelli, L., Silvestre, L.: Regularity theory for fully nonlinear integro-differential equations. Commun. Pure Appl. Math. 62(5), 597–638 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cianchi, A.: Nonlinear potentials, local solutions to elliptic equations and rearrangements. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 10(2), 335–361 (2011)

    MathSciNet  MATH  Google Scholar 

  14. Cozzi, M.: Regularity results and Harnack inequalities for minimizers and solutions of nonlocal problems: a unified approach via fractional De Giorgi classes. J. Funct. Anal. 272(11), 4762–4837 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. De Filippis, C., Mingione, G.: Gradient regularity in mixed local and nonlocal problems, ar**v:2204.06590

  16. Di Castro, A., Kuusi, T., Palatucci, G.: Nonlocal Harnack inequalities. J. Funct. Anal. 267(6), 1807–1836 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Di Castro, A., Kuusi, T., Palatucci, G.: Local behavior of fractional \(p\)-minimizers. Ann. Inst. H. Poincaré Anal. Non Linéaire 33(5), 1279–1299 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136(5), 521–573 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Duzaar, F., Mingione, G.: Gradient estimates via non-linear potentials. Am. J. Math. 133(4), 1093–1149 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Fang, Y., Shang, B., Zhang, C.: Regularity theory for mixed local and nonlocal parabolic \(p\)-Laplace equations. J. Geom. Anal. 32(1), 22–33 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  21. Foondun, M.: Heat kernel estimates and Harnack inequalities for some Dirichlet forms with non-local part. Electron. J. Probab. 14(11), 314–340 (2009)

    MathSciNet  MATH  Google Scholar 

  22. Franzina, G., Palatucci, G.: Fractional \(p\)-eigenvalues. Riv. Math. Univ. Parma (N.S.) 5(2), 373–386 (2014)

    MathSciNet  MATH  Google Scholar 

  23. Garain, P., Kinnunen, J.: On the regularity theory for mixed local and nonlocal quasilinear elliptic equations. Trans. Amer. Math. Soc. 375(8), 5393–5423 (2022)

  24. Garain, P., Kinnunen, J.: On the regularity theory for mixed local and nonlocal quasiliner parabolic equations, ar**v:2108.02986

  25. Garain, P., Kinnunen, J.: Weak harnack inequality for a mixed local and nonlocal parabolic equation, ar**v:2105.15016

  26. Garain, P., Ukhlov, A.: Mixed local and nonlocal Sobolev inequalities with extremal and associated quasilinear singular elliptic problems. Nonlinear Anal. 223, 113022 (2022)

  27. Giusti, E.: Direct Methods in the Calculus of Variations. World Scientific Publishing Co., Inc., River Edge (2003)

    Book  MATH  Google Scholar 

  28. Kilpeläinen, T.: Hölder continuity of solutions to quasilinear elliptic equations involving measures. Potential Anal. 3(3), 265–272 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kilpeläinen, T., Malý, J.: Degenerate elliptic equations with measure data and nonlinear potentials. Ann. Sc. Norm. Sup. Pisa Cl. Sci. (4) 19(4), 591–613 (1992)

    MathSciNet  MATH  Google Scholar 

  30. Kilpeläinen, T., Malý, J.: The Wiener test and potential estimates for quasilinear elliptic equations. Acta Math. 172(1), 137–161 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kim, M., Lee, K.-A., Lee, S.-C.: The Wiener criterion for nonlocal Dirichlet problems, ar**v:2203.16815

  32. Korte, R., Kuusi, T.: A note on the Wolff potential estimate for solutions to elliptic equations involving measures. Adv. Calc. Var. 3(1), 99–113 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Korvenpää, J., Kuusi, T., Lindgren, E.: Equivalence of solutions to fractional \(p\)-Laplace type equations. J. Math. Pures Appl. (9) 132, 1–26 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  34. Korvenpää, J., Kuusi, T., Palatucci, G.: The obstacle problem for nonlinear integro-differential operators. Calc. Var. Partial Differ. Equ. 55(3), Art. 63, 29 (2016)

  35. Korvenpää, J., Kuusi, T., Palatucci, G.: Fractional superharmonic functions and the Perron method for nonlinear integro-differential equations. Math. Ann. 369(3–4), 1443–1489 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  36. Kuusi, T., Mingione, G.: Gradient regularity for nonlinear parabolic equations. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 12(4), 755–822 (2013)

    MathSciNet  MATH  Google Scholar 

  37. Kuusi, T., Mingione, G.: Guide to nonlinear potential estimates. Bull. Math. Sci. 4(1), 1–82 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  38. Kuusi, T., Mingione, G.: Vectorial nonlinear potential theory. J. Eur. Math. Soc. (JEMS) 20(4), 929–1004 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  39. Kuusi, T., Mingione, G., Sire, Y.: Nonlocal equations with measure data. Commun. Math. Phys. 337(3), 1317–1368 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  40. Kuusi, T., Mingione, G., Sire, Y.: Nonlocal self-improving properties. Anal. PDE 8(1), 57–114 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  41. Kuusi, T., Mingione, G., Sire, Y.: Regularity issues involving the fractional \(p\) Laplacian, Recent developments in nonlocal theory, De Gruyter, Berlin, pp. 303–334 (2018)

  42. Lieberman, G.M.: Sharp forms of estimates for subsolutions and supersolutions of quasilinear elliptic equations involving measures. Commun. Partial Differ. Equ. 18(7–8), 1191–1212 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  43. Mingione, G., Palatucci, G.: Developments and perspectives in nonlinear potential theory. Nonlinear Anal. 194, 111452 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  44. Palatucci, G.: The Dirichlet problem for the p-fractional Laplace equation. Nonlinear Anal. 177, 699–732 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  45. Scheven, C.: Elliptic obstacle problems with measure data: potentials and low order regularity. Publ. Mat. 56(2), 327–374 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  46. Shang, B., Zhang, C.: Hölder regularity for mixed local and nonlocal \(p\)-Laplace parabolic equations, ar**v:2112.08698

  47. Showalter, R.E.: Monotone operators in Banach space and nonlinear partial differential equations, Mathematical Surveys and Monographs, vol. 49. American Mathematical Society, Providence (1997)

    Google Scholar 

  48. Trudinger, N.S., Wang, X.-J.: On the weak continuity of elliptic operators and applications to potential theory. Am. J. Math. 124(2), 369–410 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyeong Song.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Communicated by A. Mondino.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

S.-S. Byun was supported by National Research Foundation of Korea Grant NRF-2021R1A4A1027378. K. Song was supported by National Research Foundation of Korea Grant NRF-2022R1A2C1009312.

Appendix A: Existence of weak solutions

Appendix A: Existence of weak solutions

Here we sketch the proof of the existence and uniqueness of weak solutions to (1.10) for the sake of completeness.

Proposition A.1

Let \(\mu \in W^{-1,p'}(\Omega )\) and \(g\in W^{1,p}({\mathbb {R}}^{n})\) be fixed. Under assumptions (1.2)–(1.4) with \(p>1\) and \(s\in (0,1)\), there exists a unique weak solution \(u \in W^{1,p}({\mathbb {R}}^{n})\) to the Dirichlet problem (1.10).

Proof

Let us denote

$$\begin{aligned} {\mathcal {X}}^{1,p}_{g}(\Omega ) {:}{=}\left\{ u \in W^{1,p}({\mathbb {R}}^{n}): u-g \in {\mathcal {X}}^{1,p}_{0}(\Omega ) \right\} . \end{aligned}$$

We use standard monotonicity methods. We define the operator \({\mathcal {A}}:{\mathcal {X}}^{1,p}_{g}(\Omega ) \rightarrow ({\mathcal {X}}^{1,p}_{0}(\Omega ))^{*}\) by

$$\begin{aligned} \langle {\mathcal {A}}v,\varphi \rangle = \int _{\Omega }A(x,Dv)\cdot D\varphi \,dx + \int _{{\mathbb {R}}^{n}}\int _{{\mathbb {R}}^{n}}\Phi _{p}(v(x)-v(y))(\varphi (x)-\varphi (y))K(x,y)\,dxdy \end{aligned}$$

for any \(\varphi \in {\mathcal {X}}^{1,p}_{0}(\Omega )\), where \(\langle \cdot ,\cdot \rangle \) denotes the standard bilinear paring. We then check the following:

  1. (1)

    For any \(u,v\in {\mathcal {X}}^{1,p}_{g}(\Omega )\), it holds that \(\langle {\mathcal {A}}u - {\mathcal {A}}v,u-v \rangle \ge 0\).

  2. (2)

    If \(u_{j},u \in {\mathcal {X}}^{1,p}_{g}(\Omega )\) and \(u_{j} \rightarrow u\) in \({\mathcal {X}}^{1,p}_{0}(\Omega )\), then

    $$\begin{aligned} \lim _{j\rightarrow \infty }\langle {\mathcal {A}}u_{j}-{\mathcal {A}}u,v\rangle = 0 \qquad \forall \;v\in {\mathcal {X}}^{1,p}_{0}(\Omega ). \end{aligned}$$
  3. (3)

    We have

    $$\begin{aligned} \lim _{\Vert Du \Vert _{L^{p}(\Omega )}\rightarrow \infty }\frac{\langle {\mathcal {A}}u-{\mathcal {A}}g,u-g\rangle }{\Vert Du \Vert _{L^{p}(\Omega )}} = \infty . \end{aligned}$$

Recalling (1.4), (2.1) and (2.2), it is straightforward to check that (1) holds:

$$\begin{aligned}&\langle {\mathcal {A}}u-{\mathcal {A}}v,u-v \rangle \\&= \int _{\Omega }(A(x,Du)-A(x,Dv))\cdot (Du-Dv)\,dx \\&\quad + \int _{{\mathbb {R}}^{n}}\int _{{\mathbb {R}}^{n}}\left( \Phi _{p}(u(x)-u(y))-\Phi _{p}(v(x)-v(y))\right) (u(x)-v(x)-u(y)+v(y))K(x,y)\,dxdy \\&\approx \int _{\Omega }|V(Du)-V(Dv)|^{2}\,dx \\&\quad + \int _{{\mathbb {R}}^{n}}\int _{{\mathbb {R}}^{n}}(|u(x)-u(y)|+|v(x)-v(y)|)^{p-2}|u(x)-v(x)-u(y)+v(y)|^{2}\frac{dxdy}{|x-y|^{n+sp}} \\&\ge 0. \end{aligned}$$

In fact, we also have the strong monotonicity: \(\langle {\mathcal {A}}u-{\mathcal {A}}v,u-v\rangle = 0\) if and only if \(u=v\).

To show (2), we write

$$\begin{aligned}&|\langle {\mathcal {A}}u_{j}-{\mathcal {A}}u,v \rangle | \le \int _{\Omega }|A(x,Du_{j})-A(x,Du)|| Dv|\,dx \\&\quad + \int _{{\mathbb {R}}^{n}}\int _{{\mathbb {R}}^{n}}|\Phi _{p}(u_{j}(x)-u_{j}(y))-\Phi _{p}(u(x)-u(y))||v(x)-v(y)|K(x,y)\,dxdy. \end{aligned}$$

If \(p > 2\), we have

$$\begin{aligned}&|\langle {\mathcal {A}}u_{j}-{\mathcal {A}}u,v \rangle |\\&\le c\int _{\Omega }(|Du_{j}|+|Du|)^{p-2}|Du_{j}-Du||Dv|\,dx \\&\quad + c\int _{{\mathbb {R}}^{n}}\int _{{\mathbb {R}}^{n}}(|u_{j}(x)-u_{j}(y)|+|u(x)-u(y)|)^{p-2}\\&\quad |u_{j}(x)-u_{j}(y)-u(x)+u(y)| |v(x)-v(y)| \frac{dxdy}{|x-y|^{n+sp}} \\&\le c\left( \int _{\Omega }(|Du_{j}|^{p}+|Du|^{p})\,dx\right) ^{\frac{p-2}{p}}\left( \int _{\Omega }|Du_{j}-Du|^{p}\,dx\right) ^{\frac{1}{p}}\left( \int _{\Omega }|Dv|^{p}\,dx\right) ^{\frac{1}{p}} \\&\quad + c\left( \int _{{\mathbb {R}}^{n}}\int _{{\mathbb {R}}^{n}}\frac{|u_{j}(x)-u_{j}(y)|^{p}}{|x-y|^{n+sp}} + \frac{|u(x)-u(y)|^{p}}{|x-y|^{n+sp}}\,dxdy\right) ^{\frac{p-2}{p}} \\&\qquad \quad \cdot \left( \int _{{\mathbb {R}}^{n}}\int _{{\mathbb {R}}^{n}}\frac{|u_{j}(x)-u(x)-u_{j}(y)+u(y)|^{p}}{|x-y|^{n+sp}}\,dxdy\right) ^{\frac{1}{p}}\left( \int _{{\mathbb {R}}^{n}}\int _{{\mathbb {R}}^{n}}\frac{|v(x)-v(y)|^{p}}{|x-y|^{n+sp}}\,dxdy\right) ^{\frac{1}{p}}. \end{aligned}$$

If \(1<p\le 2\), we have

$$\begin{aligned}&|\langle {\mathcal {A}}u_{j}-{\mathcal {A}}u,v \rangle | \\&\le c\int _{\Omega }|Du_{j}-Du|^{p-1}|Dv|\,dx \\&\quad + c\int _{{\mathbb {R}}^{n}}\int _{{\mathbb {R}}^{n}}|u_{j}(x)-u_{j}(y)-u(x)+u(y)|^{p-1}|v(x)-v(y)|\frac{dxdy}{|x-y|^{n+sp}} \\&\le c\left( \int _{\Omega }|Du_{j}-Du|^{p}\,dx\right) ^{\frac{p-1}{p}}\left( \int _{\Omega }|Dv|^{p}\,dx\right) ^{\frac{1}{p}} \\&\quad + c\left( \int _{{\mathbb {R}}^{n}}\int _{{\mathbb {R}}^{n}}\frac{|u_{j}(x)-u(x)-u_{j}(y)+u(y)|^{p}}{|x-y|^{n+sp}}\,dxdy\right) ^{\frac{p-1}{p}}\left( \int _{{\mathbb {R}}^{n}}\int _{{\mathbb {R}}^{n}}\frac{|v(x)-v(y)|^{p}}{|x-y|^{n+sp}}\,dxdy\right) ^{\frac{1}{p}}. \end{aligned}$$

We now apply Lemma 2.2 to \(u_{j}-u \in {\mathcal {X}}^{1,p}_{0}(\Omega )\) to observe that

$$\begin{aligned}{}[u_{j} - u]_{s,p;{\mathbb {R}}^{n}} \rightarrow 0 \qquad \text {as} \qquad \Vert u_{j}-u \Vert _{W^{1,p}(\Omega )} \rightarrow 0. \end{aligned}$$

Hence, in any case, (2) follows.

By using (1.2), (2.2) and Young’s inequality, we observe that

$$\begin{aligned} \langle {\mathcal {A}}u-{\mathcal {A}}g,u-g \rangle&= \int _{\Omega }A(x,Du)\cdot (Du-Dg)\,dx - \int _{\Omega }A(x,Dg)\cdot (Du-Dg)\,dx \\&\quad + \int _{{\mathbb {R}}^{n}}\int _{{\mathbb {R}}^{n}}\Phi _{p}(u(x)-u(y))(u(x)-g(x)-u(y)+g(y))K(x,y)\,dxdy \\&\quad - \int _{{\mathbb {R}}^{n}}\int _{{\mathbb {R}}^{n}}\Phi _{p}(g(x)-g(y))(u(x)-g(x)-u(y)+g(y))K(x,y)\,dxdy \\&\ge \frac{1}{c}\int _{\Omega }|Du|^{p}\,dx - c\int _{\Omega }|Dg|^{p}\,dx \\&\quad + \frac{1}{c}\int _{{\mathbb {R}}^{n}}\int _{{\mathbb {R}}^{n}}\frac{|u(x)-u(y)|^{p}}{|x-y|^{n+sp}}\,dxdy - c\int _{{\mathbb {R}}^{n}}\int _{{\mathbb {R}}^{n}}\frac{|g(x)-g(y)|^{p}}{|x-y|^{n+sp}}\,dxdy, \end{aligned}$$

from which (3) follows.

We now define the modified operator \({\mathcal {A}}_{0}:{\mathcal {X}}^{1,p}_{0}(\Omega )\rightarrow ({\mathcal {X}}^{1,p}_{0}(\Omega ))^{*}\) by

$$\begin{aligned} {\mathcal {A}}_{0}v {:}{=}{\mathcal {A}}(v+g), \qquad v \in {\mathcal {X}}^{1,p}_{0}(\Omega ). \end{aligned}$$

Then the properties (1)–(3) imply that \({\mathcal {A}}_{0}\) is monotone, hemicontinuous and coercive (see [47, Chapter II, Section 2] for the relevant definitions). Moreover, we have \(\mu \in W^{-1,p'}(\Omega ) \subset ({\mathcal {X}}^{1,p}_{0}(\Omega ))^{*}\). Then, by [47, Corollary 2.2], there exists \(v \in {\mathcal {X}}^{1,p}_{0}(\Omega )\) such that

$$\begin{aligned} \langle {\mathcal {A}}_{0}v,\varphi \rangle = \langle \mu ,\varphi \rangle \qquad \forall \;\varphi \in {\mathcal {X}}^{1,p}_{0}(\Omega ), \end{aligned}$$

which is equivalent to

$$\begin{aligned} \langle {\mathcal {A}}(v+g),\varphi \rangle = \langle \mu ,\varphi \rangle \qquad \forall \;\varphi \in {\mathcal {X}}^{1,p}_{0}(\Omega ). \end{aligned}$$

Therefore, \(u {:}{=}v+g\) is a weak solution to (1.10) as desired. Also, the uniqueness easily follows from the strict monotonicity of \({\mathcal {A}}_{0}\). \(\square \)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Byun, SS., Song, K. Mixed local and nonlocal equations with measure data. Calc. Var. 62, 14 (2023). https://doi.org/10.1007/s00526-022-02349-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-022-02349-7

Mathematics Subject Classification

Navigation