Log in

Optimum sensors allocation for drones multi-target tracking under complex environment using improved prairie dog optimization

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

This paper presents a novel hybrid optimization method to solve the resource allocation problem for multi-target multi-sensor tracking of drones. This hybrid approach, the Improved Prairie Dog Optimization Algorithm (IPDOA) with the Genetic Algorithm (GA), utilizes the strengths of both algorithms to improve the overall optimization performance. The goal is to select a set of sensors based on norms of weighted distances cost function. The norms are the Euclidean distance and the Mahalanobis distance between the drone location and the sensors. The second one depends on the predicted covariance of the tracker. The Extended Kalman Filter (EKF) is used for state estimation with proper clutter and detection models. Since we use Multi-objects to track, the Joint Probability Distribution Function (JPDA) estimates the best measurement values with a preset gating threshold. The goal is to find a sensor or minimum set of sensors that would be enough to generate high-quality tracking based on optimum resource allocation. In the experimentation simulated with Stone Soup, one radar among five radars is selected at every time step of 50-time steps for 200 tracks distributed over 20 different ground truths. The proposed IPDOA provided optimum solutions for this complex problem. The obtained solution is an optimum offline solution that is used to select one or more sensors for any future flights within the vicinity of the 5 radars. Environment and conditions are assumed to be similar in future drone flights within the radars’ defined zone. The IPDOA performance was compared with the other 8 metaheuristic optimization algorithms and the testing showed its superiority over those techniques for solving this complex problem. The proposed simulated model can find the most relevant sensor(s) capable of generating the best quality tracks based on weighted distance criteria (Euclidean and Mahalanobis ). That would cut down the cost of operating extra sensors and then it would be possible to move them to other vicinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Algorithm 1
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data are available from the authors upon reasonable request.

References

  1. Ullah A, Aznaoui H, Sebai D, Abualigah L, Alam T, Chakir A (2024) Internet of things and cloud convergence for ehealth systems: concepts, opportunities, and challenges. Wireless Pers Commun 133:1–51

    Google Scholar 

  2. Zitar RA, Mohsen A, Seghrouchni AE, Barbaresco F, Al-Dmour NA (2023) Intensive review of drones detection and tracking: linear kalman filter versus nonlinear regression, an analysis case. Arch Comput Methods Eng 30:1–20

    Article  Google Scholar 

  3. Castella FR (1980) An adaptive two-dimensional Kalman tracking filter. IEEE Trans Aerosp Electr Syst 16(6):822–829. https://doi.org/10.1109/TAES.1980.309006

    Article  Google Scholar 

  4. Jouaber S, Bonnabel S, Velasco-Forero S, Pilté M (2021) Nnakf: A neural network adapted kalman filter for target tracking, in: ICASSP 2021 - 2021 IEEE International conference on acoustics, speech and signal processing (ICASSP), pp. 4075–4079. https://doi.org/10.1109/ICASSP39728.2021.9414681

  5. Vaidehi V, Chitra N, Krishnan C, Chokkalingam M (1999) Neural network aided kalman filtering for multitarget tracking applications, in: Proceedings of the 1999 IEEE radar conference. radar into the next millennium (Cat. No.99CH36249), pp. 160–165. https://doi.org/10.1109/NRC.1999.767301

  6. Campbell MA, Clark DE, de Melo F (2021) An algorithm for large-scale multitarget tracking and parameter estimation. IEEE Trans Aerosp Electron Syst 57(4):2053–2066

    Article  Google Scholar 

  7. Yilmaz A, Javed O, Shah M (2006) Object tracking: a survey. ACM Comput Surv 38(4):13. https://doi.org/10.1145/1177352.1177355

    Article  Google Scholar 

  8. Collins RT (2012), Multitarget data association with higher-order motion models, in, (2012) IEEE conference on computer vision and pattern recognition. IEEE pp 1744–1751

  9. Glass JD, Blair WD, Bar-Shalom Y (2014) Optimizing radar signal to noise ratio for tracking maneuvering targets, in: 17th international conference on information fusion (FUSION), IEEE. pp. 1–7

  10. Minh H-L, Sang-To T, Theraulaz G, Wahab MA, Cuong-Le T (2023) Termite life cycle optimizer. Expert Syst Appl 213:119211

    Article  Google Scholar 

  11. Minh H-L, Sang-To T, Khatir S, Wahab MA, Cuong-Le T (2023) Damage identification in high-rise concrete structures using a bio-inspired meta-heuristic optimization algorithm. Adv Eng Softw 176:103399

    Article  Google Scholar 

  12. Minh HL, Sang-To T, Abdel Wahab M, Cuong-Le T (2023) K-means optimizer: An efficient optimization algorithm for predicting the uncertain material parameters in real structures, in: Proceedings of the 5th international conference on numerical modelling in engineering: Volume 1: Numerical Modelling in Civil Engineering, NME 2022, 23-24 August, Ghent University, Belgium, Springer, pp. 71–81

  13. Zitar RA, Abualigah L, Barbaresco F, Seghrouchni AE (2023) Modified arithmetic optimization algorithm for drones measurements and tracks assignment problem. Neural Comput Appl 35(14):10421–10447

    Article  Google Scholar 

  14. Al-Muhammed MJ, Zitar RA (2018) Probability-directed random search algorithm for unconstrained optimization problem. Appl Soft Comput 71:165–182

    Article  Google Scholar 

  15. Maria KA, Zitar RA (2007) Emotional agents: a modeling and an application. Inf Softw Technol 49(7):695–716

    Article  Google Scholar 

  16. Al Hamad HA, Zitar RA (2010) Development of an efficient neural-based segmentation technique for arabic handwriting recognition. Pattern Recogn 43(8):2773–2798

    Article  Google Scholar 

  17. Afaneh S, Zitar RA, Al-Hamami A (2013) Virus detection using clonal selection algorithm with genetic algorithm (vdc algorithm). Appl Soft Comput 13(1):239–246

    Article  Google Scholar 

  18. Zitar RA, Hamdan A (2013) Genetic optimized artificial immune system in spam detection: a review and a model. Artif Intell Rev 40(3):305–377

    Article  Google Scholar 

  19. Arif MS, Mukheimer A, Asif D (2023) Enhancing the early detection of chronic kidney disease: a robust machine learning model. Big Data Cognit Comput. https://doi.org/10.3390/bdcc7030144

    Article  Google Scholar 

  20. Asif D, Bibi M, Arif MS, Mukheimer A (2023) Enhancing heart disease prediction through ensemble learning techniques with hyperparameter optimization. Algorithms. https://doi.org/10.3390/a16060308

    Article  Google Scholar 

  21. Nawaz Y, Arif MS, Shatanawi W, Nazeer A (2021) An explicit fourth-order compact numerical scheme for heat transfer of boundary layer flow. Energies. https://doi.org/10.3390/en14123396

    Article  Google Scholar 

  22. Nawaz Y, Arif MS, Abodayeh K (2022) A third-order two-stage numerical scheme for fractional stokes problems: a comparative computational study. J Comput Nonlinear Dyn 17(10):101004. https://doi.org/10.1115/1.4054800

    Article  Google Scholar 

  23. Nawaz Y, Arif MS, Abodayeh K (2022) An explicit-implicit numerical scheme for time fractional boundary layer flows. Int J Numer Methods Fluids 94(7):920–940. https://doi.org/10.1002/fld.5078

    Article  MathSciNet  Google Scholar 

  24. Chuprov S, Reznik L, Khokhlov I, Manghi K, (2022) Multi-modal sensor selection with genetic algorithms, in, IEEE Sensors. IEEE 2022:1–4

  25. Khokhlov I, Pudage A, Reznik L, (2019) Sensor selection optimization with genetic algorithms, in, IEEE SENSORS. IEEE 2019:1–4

  26. Ezugwu AE, Agushaka JO, Abualigah L, Mirjalili S, Gandomi AH (2022) Prairie dog optimization algorithm. Neural Comput Appl 34(22):20017–20065

    Article  Google Scholar 

  27. Jahangir M, Ahmad BI, Baker CJ (2021) The application of performance metrics to staring radar for drone surveillance, in: 2020 17th European Radar Conference (EuRAD), pp. 382–385. https://doi.org/10.1109/EuRAD48048.2021.00104

  28. Bertsekas DP, Eckstein J (1988) Dual coordinate step methods for linear network flow problems

  29. Jonker R, Volgenant A (1987) A shortest augmenting path algorithm for dense and sparse linear assignment problems. Computing 38(4):325–340. https://doi.org/10.1007/BF02278710

    Article  MathSciNet  Google Scholar 

  30. Bar-Shalom Y, Daum F, Huang J (2009) The probabilistic data association filter. IEEE Control Syst Mag 29(6):82–100. https://doi.org/10.1109/MCS.2009.934469

    Article  MathSciNet  Google Scholar 

  31. Musicki D, Evans R (2004) Joint integrated probabilistic data association: Jipda. IEEE Trans Aerosp Electron Syst 40(3):1093–1099. https://doi.org/10.1109/TAES.2004.1337482

    Article  Google Scholar 

  32. Wan E, Van Der Merwe R (2000) The unscented kalman filter for nonlinear estimation, in: Proceedings of the IEEE 2000 adaptive systems for signal processing, communications, and control symposium (Cat. No.00EX373), pp. 153–158. https://doi.org/10.1109/ASSPCC.2000.882463

  33. ** XB, Robert Jeremiah RJ, Su TL, Bai YT, Kong JL (2021) The new trend of state estimation: from model-driven to hybrid-driven methods. Sensors. https://doi.org/10.3390/s21062085

    Article  Google Scholar 

  34. Marion P, Sami J, Silvère B, Frédéric B, Marc F, Nicolas H (2019) Invariant extended kalman filter applied to tracking for air traffic control, in. Int Radar Conf (RADAR) 2019:1–6. https://doi.org/10.1109/RADAR41533.2019.171239

    Article  Google Scholar 

  35. Gan R, Ahmad BI, Godsill SJ (2021) Lévy state-space models for tracking and intent prediction of highly maneuverable objects. IEEE Trans Aerosp Electron Syst 57(4):2021–2038. https://doi.org/10.1109/TAES.2021.3088430

    Article  Google Scholar 

  36. Haarnoja T, Ajay A, Levine S, Abbeel P (2017) Backprop kf: Learning discriminative deterministic state estimators. ar**v: 1605.07148

  37. Mahler R (2017) Measurement-to-track association and finite-set statistics. ar**v: 1701.07078

  38. Vo BN, Singh S, Doucet A (2003) Sequential monte carlo implementation of the phd filter for multi-target tracking, in: Sixth international conference of information fusion, 2003. Proceedings of the, Vol. 2, pp. 792–799. https://doi.org/10.1109/ICIF.2003.177320

  39. Hendeby G, Karlsson R (2014) Gaussian mixture phd filtering with variable probability of detection, in: 17th international conference on information fusion (FUSION). pp. 1–7

  40. Fansi Tchango A, Thomas V, Buffet O, Flacher F, Dutech A (2014) Tracking multiple interacting targets using a joint probabilistic data association filter

  41. Svensson L, Svensson D, Guerriero M, Willett P (2011) Set jpda filter for multitarget tracking. IEEE Trans Signal Process 59(10):4677–4691

    Article  MathSciNet  Google Scholar 

  42. Redmon J, Divvala S, Girshick R, Farhadi A (2016) You only look once: Unified, real-time object detection, in: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 779–788

  43. Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu CY, Berg AC (2016) Ssd: Single shot multibox detector, in: European conference on computer vision, Springer. pp. 21–37

  44. Zhao F, Shin J, Reich J (2002) Information-driven dynamic sensor collaboration. IEEE Signal Process Mag 19(2):61–72

    Article  Google Scholar 

  45. De Maesschalck R, Jouan-Rimbaud D, Massart DL (2000) The mahalanobis distance. Chemom Intell Lab Syst 50(1):1–18

    Article  Google Scholar 

  46. Forestiero A (2017) Bio-inspired algorithm for outliers detection. Multimed Tools Appl 76:25659–25677

    Article  Google Scholar 

  47. Forestiero A, Mastroianni C, Papuzzo G, Spezzano G (2010) A proximity-based self-organizing framework for service composition and discovery, in: 2010 10th IEEE/ACM international conference on cluster, cloud and grid computing, pp. 428–437. https://doi.org/10.1109/CCGRID.2010.48

  48. Cicirelli F, Forestiero A, Giordano A, Mastroianni C (2016) Transparent and efficient parallelization of swarm algorithms. ACM Trans Auton Adaptive Syst (TAAS) 11(2):1–26

    Article  Google Scholar 

  49. Holland JH (1992) Genetic algorithms. Sci Am 267(1):66–73

    Article  Google Scholar 

  50. Ghasemi M, Zare M, Zahedi A, Trojovskỳ P, Abualigah L, Trojovská E (2024) Optimization based on performance of lungs in body: lungs performance-based optimization (lpo). Comput Methods Appl Mech Eng 419:116582

    Article  MathSciNet  Google Scholar 

  51. Abdollahzadeh B, Khodadadi N, Barshandeh S, Trojovskỳ P, Gharehchopogh FS, El-kenawy ESM, Abualigah L, Mirjalili S (2024) Puma optimizer (po): a novel metaheuristic optimization algorithm and its application in machine learning, Cluster Computing. pp 1–49

  52. Julier SJ, Uhlmann JK (2009) General decentralized data fusion with covariance intersection. Handbook of multisensor data fusion: theory and practice. CRC Press, Boca Raton, pp 319–344

    Google Scholar 

  53. Abualigah L, Diabat A, Mirjalili S, Abd Elaziz M, Gandomi AH (2021) The arithmetic optimization algorithm. Comput Methods Appl Mech Eng 376:113609

    Article  MathSciNet  Google Scholar 

  54. Rana N, Latiff MSA, Abdulhamid SM, Chiroma H (2020) Whale optimization algorithm: a systematic review of contemporary applications, modifications and developments. Neural Comput Appl 32(20):16245–16277

    Article  Google Scholar 

  55. Shayanfar H, Gharehchopogh FS (2018) Farmland fertility: a new metaheuristic algorithm for solving continuous optimization problems. Appl Soft Comput 71:728–746

    Article  Google Scholar 

  56. Agushaka JO, Ezugwu AE, Abualigah L (2022) Dwarf mongoose optimization algorithm. Comput Methods Appl Mech Eng 391:114570

    Article  MathSciNet  Google Scholar 

  57. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61

    Article  Google Scholar 

  58. Abdollahzadeh B, Soleimanian Gharehchopogh F, Mirjalili S (2021) Artificial gorilla troops optimizer: a new nature-inspired metaheuristic algorithm for global optimization problems. Int J Intell Syst 36(10):5887–5958

    Article  Google Scholar 

  59. Abdollahzadeh B, Gharehchopogh FS, Mirjalili S (2021) African vultures optimization algorithm: a new nature-inspired metaheuristic algorithm for global optimization problems. Comput Indus Eng 158:107408

    Article  Google Scholar 

  60. Box G (1988) Signal-to-noise ratios, performance criteria, and transformations. Technometrics 30(1):1–17

    Article  MathSciNet  Google Scholar 

  61. Force T Single integrated air picture (siap)

  62. Beard M, Vo BT, Vo BN (2017) Ospa (2): Using the ospa metric to evaluate multi-target tracking performance, In: 2017 international conference on control, automation and information sciences (ICCAIS), IEEE, pp. 86–91

Download references

Acknowledgements

This research is supported by the Thales Chair of Excellence Project, Sorbonne Center of Artificial Intelligence, Sorbonne University-Abu Dhabi, UAE.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Raed Abu Zitar or Laith Abualigah.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zitar, R.A., Alhadhrami, E., Abualigah, L. et al. Optimum sensors allocation for drones multi-target tracking under complex environment using improved prairie dog optimization. Neural Comput & Applic 36, 10501–10525 (2024). https://doi.org/10.1007/s00521-024-09602-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-024-09602-4

Keywords

Navigation